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Abstract

In many competitions where creativity and innovation play a large role (e.g., ar-

chitecture design competitions or research grant competitions), contestants can be un-

certain about the organizer’s exact preferences. I develop a model of creative contests

in which two firms compete by adjusting their designs when they are uncertain about

the contest organizer’s ideal design. My model contrasts with existing contest models,

as the latter assume organizer preferences instead to be public knowledge. A model

of creative contests that accounts for such uncertainty enables us to study many new

questions. In particular, I investigate whether an organizer should disclose her ideal

design to contestants and find that disclosure is not always optimal for organizers,

because disclosing an ideal design favors one participant over others and thus discour-

ages competition. I also conduct a laboratory experiment to test the model’s empirical

relevance when assumptions about rationality and risk-neutrality are not necessarily

satisfied and find that the results are generally consistent with theoretical predictions

for contestants’ behavior and for whether the organizer benefits from disclosure.

Keywords: all-pay contests, uncertainty, information disclosure, experiment
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1 Introduction

Contests are widely used to allocate scarce resources. In many contests, such as lobbying,

college admissions, and sports competitions, it is clear to the contestants what the contest

organizer asks for and how she will rank their performance. This is less clear in other

contests, such as architecture design competitions and research grant competitions. I refer

to such competitions as creative contests.

The following example illustrates the key feature of creative contests: in 1980, the Vietnam

Veterans Memorial Design Competition was organized in the US. At the time that contestants

submitted their designs, the judges’ precise preferences regarding various possible designs

were not known to the contestants. Indeed, the winner, Maya Ying Lin, was surprised

because her design had earned her a B in a class assignment.

Competitions in which the ranking of contestants’ possible submissions is publicly known

at the outset of the competition have been widely studied in the contest literature [see

Konrad (2009) and Vojnović (2016) for a review]. In such contests, contestants make trade-

offs between two forces: more effort increases the chance of winning but also costs more.

Meanwhile, some contest models include uncertainty or noises, such as in Tullock (1980)

lottery contests and Lazear and Rosen (1981) type tournaments. Noise and uncertainty lead

to a probabilistic prize allocation, but it is publicly known that the contest organizer prefers

higher effort to lower effort on average anyway.

This paper, thus, develops a simple two-player model that accommodates a key feature

of creative contests: the fact that contestants are uncertain about the organizer’s exact

preferences. Specifically, in addition to the trade-off mentioned above between the chance

of winning and the costs of effort, contestants in the new model also take into account their

uncertainty regarding what the organizer is asking for.

My model consists of one contest organizer and two design firms. The design firms are

symmetrically uninformed about the organizer’s ideal design and compete for a prize by
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each submitting a design. After both firms submit their designs, the organizer ranks the

designs based on how close they are to her ideal. Each firm has a different initial design,

which can be adjusted at a cost. Moreover, the firms may value the prize differently.

I characterize the unique Nash equilibrium and then consider the following thought experi-

ment. If the contest organizer has the option to disclose her ideal design to the firms, does

it always benefit her to do so? I find that disclosing the ideal design is, in fact, not always

optimal. When firms’ adjustment costs are low, the organizer does benefit from disclosing

because both firms can easily adjust their designs; as a result, the winning design is closer

to the organizer’s ideal. However, there is also a countervailing force: when the ideal design

is disclosed, the firm whose initial design is closer to that ideal gains an advantage. This

fact discourages its opponent from competing further — which in turn reduces the incentives

of the advantaged firm to compete further as well. This discouragement effect increases as

adjustment costs increase, because it grows harder for the disadvantaged firm to catch up.

When adjustment costs are high enough, then, the contest organizer is made worse off by

disclosing her ideal design.

My model assumes rationality and risk neutrality. However, as these conditions are not nec-

essarily satisfied in real-life situations, I conduct a laboratory experiment to test the model’s

empirical relevance. I frame the experiment using a Hotelling (1929) model, in which two

firms make costly moving decisions. After both firms make their decisions, then, a computer-

ized consumer arrives at a random location and makes a purchase. The experimental results

broadly support my model’s predictions relating to firms’ behavior, as well as the compar-

ative static prediction regarding the benefit of disclosure; in particular, subjects compete

more aggressively when moving costs are low and when the consumer is disclosed to be near

the midpoint between the two firms’ initial locations. The consumer’s welfare, measured as

the distance from the winning firm, is significantly improved when moving costs are low, but

insignificantly improved when moving costs are high.

The contribution of this paper is threefold. First, I develop a model that incorporates

3



contestants’ uncertainty about the organizer’s objective. The closest paper in this respect

is Letina and Schmutzler (2017), in which a buyer induces innovations from two suppliers

and in which the ideal approach is unknown to both the buyer and the suppliers. In Letina

and Schmutzler (2017), all approaches have the same cost, and the authors consider how the

buyer (organizer) could induce various approaches by designing a mechanism with allowable

bid prices and transfers. My model considers a given mechanism and allows contestants to

have different and non-constant cost functions.

The second contribution is that it studies an information disclosure problem in all-pay con-

tests. Some existing papers have looked at a simpler version of the question in different

settings. For example, Kaplan (2012) considers whether a buyer would be better off by

communicating her preferences to sellers. A design with a preferred style generates the same

premium to the buyer, and styles could either be left unchanged or could be changed at zero

cost. My model allows the organizer to value styles differently and allows contestants to

change their designs with a continuous cost function; thus, the model captures more of the

elements one might find in the field.

Lastly, this paper also contributes to the literature on contest experiments; my experiment

allows us to examine directly how and whether information affects behaviors in a contest ex-

periment. I find that, consistent with overbidding behavior found in the literature [Sheremeta

(2013) and Gneezy and Smorodinsky (2006)], subjects overbid in the experiment.1 Specif-

ically, I find that overbidding is reduced when consumer locations are disclosed, and it is

reduced further when subjects are disclosed to be at a disadvantage within the competition.

This suggests that having an advantageous position and incomplete information about the

consumer location (or, in the current study, ideal design) may be additional sources of over-

bidding behavior, beyond the various sources of such behavior summarized in Sheremeta

(2013).

The remainder of this paper is organized as follows. Section 2 sets up the model. Section
1Overbidding in my experiment means subjects make more adjustments than the equilibrium predicts.
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3 solves for the unique Nash equilibrium. Section 4 investigates the organizer’s information

disclosure problem. Section 5 empirically tests theoretical predictions about contestants’

behavior and the contest organizer’s welfare in a laboratory experiment. Section 6 discusses

a generalization of the model and its connections with the literature from other fields. Section

7 concludes. Proofs not in the text appear in the appendix.

2 The Model

A risk-neutral contest organizer hosts an architectural design competition to elicit a design

for a new building. Let Ω = [0, 1] be the set of all possible designs. Two risk-neutral

design firms, labeled by A and B, compete for a single prize by submitting designs a, b ∈ Ω

simultaneously and independently.2 Denote Firm i = A,B’s valuation of the prize by Vi.

Firm A has an initial design α0 and Firm B has an initial design β0. Firm i = A,B incurs

a sunk cost ci that depends on the adjustment of the submitted design relative to its initial

design.

After receiving both submissions, the organizer rank the designs based on their distances

from her ideal design s∗. I assume that s∗ is randomly drawn from a uniform distribution

U [0, 1]. The firm whose submission is closer to s∗ wins the prize. In case of a tie, both firms

have equal probabilities of winning. Therefore, when submissions are (a, b), firms’ expected

utilities are

UA(a, b) = PA(a, b)VA − cA(|a− α0|) (1)

and

UB(a, b) = PB(a, b)VB − cB(|b− β0|), (2)

2I will use the terms “submissions” and “designs” interchangeably.
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where expected probability of winning PA and PA satisfy:

1− PB(a, b) = PA(a, b) =



a+b
2

if a < b,

1
2

if a = b,

1− a+b
2

if a < b.

Figure 1 below graphically illustrates the model.

Figure 1: illustration of the model
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I consider creative contests that satisfy the following assumption:

Assumption 1. ci is quadratic.

This assumption, together with the uniform distribution, implies that expected utilities in

(1) and (2) are strictly concave. This guarantees the uniqueness of pure-strategy Nash

equilibria whenever such an equilibrium exists. When there exists only a mixed-strategy

Nash equilibrium, meanwhile, strict concavity guarantees a nice structure of its support.

Assumption 1 can be generalized to any increasing, twice differentiable, and strictly convex

costs; this assumption is common in the contest literature. More details can be found in

Section 6.2.

For notational simplicity, I focus on the case where two firms’ initial designs are extreme:

α0 = 0 and β0 = 1. Recall that firms could be asymmetric in two aspects: adjustment costs

and initial designs. Hence, for instance, one firm may have an advantage in the competition

over the other firm because it bears a lower cost to make the same adjustments. Alternatively,

a firm may be at an advantage because its initial design is more “mainstream” (i.e. close to
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the median of the distribution of possible designs) and therefore needs fewer adjustments in

the first place. The ways in which these two sources of asymmetry interact and affect the

organizer’s welfare are not the primary focus of the current paper, but interested readers can

refer to Zhu (2019).

3 Solving For Equilibrium

3.1 Existence

A Nash equilibrium is a strategy profile in which each firm’s strategy assigns probability

one to the firm’s best response set, given the other firm’s strategy. The existence of Nash

equilibria in creative contests is not obvious because utility functions are discontinuous.

When both firms choose the same design s, a slight deviation to its left or right yields winning

probabilities of s and 1 − s, which are not equal unless s = 1
2
. This discontinuity may lead

to non-existence of Nash equilibrium; see Sion and Wolfe (1957) and Shaked (1975). I apply

Dasgupta and Maskin (1986)’s existence result to prove that there exists a Nash equilibrium

in every creative contest.

Proposition 1. Every creative contest has a Nash equilibrium.

The equilibrium could be either in pure or mixed strategies. In what follows, I first provide

a necessary and sufficient condition for the existence of a pure strategy Nash equilibrium

(PSNE henceforth), as well as a characterization of the equilibrium. I then examine cases

in which PSNE does not exist and solve for a mixed strategy Nash equilibrium (MSNE

henceforth), which is bound to exist by Proposition 1. At the end of Section 3, I show that

the characterized equilibrium, either in pure or mixed strategies, is the unique equilibrium.
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3.2 Pure Strategy Nash Equilibrium

To characterize PSNE, I introduce the following definition.

Definition 1. Firm i’s left (right) optimal design is its best response when the other firm

chooses the rightmost (leftmost) design.

As an example, firm A’s left optimal design, denoted by ãL, maximizes UA(a, 1) = a+1
2
−cA(a);

likewise, firm B’s right optimal submission b̃R maximizes UB(0, b) = 1− b
2
− cB(1− b).

This definition is useful in characterizing PSNE because ãL and b̃R depend solely on the

model primitives but capture firm i’s local incentive to deviate. Figure 2 illustrates how ãL

can be used to determine whether a is a best response to b. The plotted curve is firm A’s

expected utility from submitting a when B chooses 1: UA(a, 1) = a+1
2
− cA(a), which attains

its maximum at ãL. For any a ∈ [0, b), firm A’s expected utility for submission (a, b) differs

from UA(a, 1) by a constant because UA(a, b) = a+b
2
−cA(a) = UA(a, 1)− 1−b

2
. In other words,

UA(a, b) also reaches its maximum at ãL for a ∈ [0, b). Hence a is not a best response to b.

Figure 2: illustration of ãL and its use
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a

•
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More formally, Definition 1 can pin down the unique candidate of PSNE, as Claim 1 states.

Claim 1. If ãL < b̃R, the unique candidate of PSNE is (ãL, b̃R); otherwise, it is (1
2
, 1

2
).

The intuition is the following. It cannot be the case where (a, b) is an equilibrium with a > b

because firm A would deviate by reducing the adjustment and submitting a design that is

to the immediate right of b. If (a, b) is an equilibrium where a = b , it must be a = b = 1
2
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because otherwise probabilities for s∗ to fall on both sides of a = b are not equal and both

firms would “undercut” their opponent to obtain the larger probability of winning. If (a, b)

is an equilibrium where a < b, from the explanations above, it must be a = ãL and b = b̃R;

otherwise, it is not a mutually best response.

The conditions in Claim 1 are necessary but not sufficient. Figure 3 illustrates the reason

and adds additional necessary conditions for (ãL, b̃R) to be an equilibrium. In the figure, ãL

and b̃R are so close so that when firm A could gain by deviating from ãL to the immediate

right of b̃R. This means, for (ãL, b̃R) to be an equilibrium, besides a = ãL and b = b̃R, it

must be UA(ãL, b̃R) ≥ lima↓b̃R UA(a, b̃R) and UB(ãL, b̃R) ≥ limb↑ãL UB(ãL, b̃R).

Figure 3: an additional constraint for (ã, b̃) to be PSNE

0 1

α0 β0• •••
ãL̃bR

It turns out these two sets of constraints together are sufficient for PSNE. Theorem 1 sum-

marizes necessary and sufficient conditions for PSNE and is the main result of this section.

Theorem 1. The unique PSNE is (1
2
, 1

2
) if and only if ãL ≥ 1

2
≥ b̃R. The unique PSNE is

(ãL, b̃R) if and only if ãL < b̃R, UA(ãL, b̃R) ≥ lima↓b̃R UA(a, b̃R) and UB(ãL, b̃R) ≥ limb↑ãL UB(ãL, b̃R).

In other cases, there exists no PSNE.

Proof. =⇒ : By Claim 1, when (1
2
, 1

2
) is a PSNE, it must be ãL > b̃R. If ãL < 1

2
, by

definition of ãL, UA(ãL,
1
2
) > UA(1

2
, 1

2
). Hence (1

2
, 1

2
) is not an equilibrium. This implies

ãL ≥ 1
2
. Similar logic applies to b̃R ≤ 1

2
.

When (ãL, b̃R) is an equilibrium, the last two conditions must hold by definition of a Nash

equilibrium, while the first follows from Lemma 1.

⇐=: uniqueness follows from Lemma 1. To show they are indeed equilibria when conditions

are satisfied: when ãL ≥ 1
2
, firm A has no profitable deviations from 1

2
to a ∈ [0, 1

2
] because of
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the definition of ãL. Firm A also has no incentive to deviate to (1
2
, 1) because it increases costs

but lowers the winning probability. Similar argument shows Firm B also has no incentive to

deviate from 1
2
.

When ãL < b̃R, by definition of ãL, ãL is a best response to b̃R for a ∈ [0, b̃R). Because

UA(ãL, b̃R) ≥ lima↓b̃R UA(a, b̃R), Firm A also has no incentive to deviate to any design on

(b̃R, 1]. This shows that firm A has no incentive to deviate. Similar argument shows firm B

has no incentive to deviate from b̃R.

Theorem 1 suggests that adjustment costs determine Nash equilibria in the following way.

When both firms have low marginal costs, adjustment costs are low and ãL and b̃R are both

far away from firms’ initial designs, 0 and 1, implying ãL > b̃R. The only “agreement” they

could achieve is for both firms to choose 1
2
; Hotelling location model is a limit case, in which

marginal costs are both zero. On the other hand, when marginal costs are high, adjustment is

costly for both firms. ãL and b̃R are hence close to firms’ featured designs, 0 and 1, implying

ãL < b̃R. Therefore, in equilibrium, they both make small adjustments towards each other.

When firms are asymmetric in adjustment costs, there might be no PSNE.

A special case arises when both firms have the same adjustment cost. I call such contests

symmetric contests. In this case, a pure strategy equilibrium always exists.

Proposition 2. Symmetric creative contests have a unique PSNE.

Proof. When cA = cB, ãL + b̃R = 1. If ãL < b̃R, by symmetry, it must be ãL < 1
2
< b̃R.

Hence firm A has no incentive to deviate to the immediate right of b̃R. Similarly, firm B

has no incentive to deviate to the immediate left of ãL. According to Theorem 1, the unique

PSNE is (ãL, b̃R).

If ãL > b̃R, by symmetry, it must be ãL > 1
2
> b̃R. According to Theorem 1, the unique

PSNE is (1
2
, 1

2
).
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3.3 Mixed Strategy Nash Equilibrium

Mixed strategy Nash equilibria can be pinned down once firms’ best response sets are iden-

tified. Instead of working with best response sets directly, I focus my attention on their

support, defined as follows.

Definition 2. The support of a strategy is the smallest closed set to which the strategy assigns

probability one.

The following claim is useful in identifying the supports of the equilibrium strategies.

Claim 2. In equilibrium, any accumulation point s in the support is a best response if the

opponent does not have an atom at s.

Proof. This is an implication of continuity. When firm j has no atom at s, firm i’s expected

utility is continuous at s. When s is an accumulation point in firm i’s support, there is a

sequence of points approaching s in his best response set. firm i gets his equilibrium payoffs

at all these points, and by continuity, he also gets his equilibrium payoffs at s.

In the remaining of the paper, I will focus on regular equilibria, defined as follows.3

Definition 3. A strategy is regular if its support is as a finite union of closed intervals. A

mixed strategy Nash equilibrium is regular if both firms’ strategies are regular.

Proposition 3 below characterizes the support of equilibrium strategies.

Proposition 3. In equilibrium, both firms continuously randomize on a common interval

[α, β]. Moreover, each firm has at most one atom:

1. If ãL, b̃R are both smaller than 1
2
, firm A’s atom is ãL and firm B’s atom is α, satisfying

ãL ≤ α < β < 1
2
and b̃R < β.

3Exceptions to regular strategies are rare and artificial: for instance, Siegel (2010)’s online appendix
provides an example in which cost functions are constructed with Cantor functions.
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2. If ãL, b̃R are both greater than 1
2
, firm A’s atom is β and firm B’s atom is b̃R, satisfying

1
2
< α < β ≤ b̃R and ãL > α.

Proposition 3 is proved using the following 4 lemmas.

Lemma 1. In equilibrium, if firm i best responds at two points l < r, firm j must choose

[l, r] with positive probability.

Proof. Suppose otherwise: given firm j’s strategy Gj, firm i obtains her maximum expected

utility at both l and r; however, firm j choose [l, r] with zero probability.

Expected utility for firm i to choose l is

Ui(l) =

∫ l

0

(1− z + l

2
)dGj(z) +

∫ 1

r

(
z + l

2
)dGj(z)− ci(l)

Similarly, expected utility for firm i to choose r is

Ui(r) =

∫ l

0

(1− z + r

2
)dGj(z) +

∫ 1

r

(
z + r

2
)dGj(z)− ci(r)

Moreover, because firm j chooses [l, r] with zero probability, expected utility for firm i to

choose any s ∈ [l, r] is

Ui(s) =

∫ l

0

(1− z + s

2
)dz +

∫ 1

r

(
z + s

2
)dz − ci(s)

= C +
s

2
(1− 2Gj(l))− ci(s)

where C =
∫ l

0
(1− z

2
)dGj(z) +

∫ 1

r
z
2
dGj(z) does not depend on s. By Assumptions ?? and 1,

Ui(s) is strictly concave in s. This contradicts the statement that l and r both are in the

best response set.

Lemma 1 does not rule out gaps in the support. For example, suppose firm 1 has an atom

at s = 0 and continuously randomizes on [α, β]; firm 2 has an atom at α and continuously
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randomizes on [α, β]. This structure does not violate Lemma 1, but firm1’s support contains

a gap (0, α).

Despite this, Lemma 1 implies the following two lemmas, which inspect intervals and atoms

separately.

Lemma 2 (One Interval). In equilibrium, both firms randomize on one common interval

[α, β].

I first show that firms randomize on some common intervals, after which I prove there must

be only one interval. Below is a sketch of the proof.

Suppose firms randomize on different intervals: there exists some interval [l, r] such that it

is in firm i’s support but not in firm j’s. In other words, firm i best responds at both l and

r, but firm j chooses [l, r] with zero probability. This contradicts Lemma 1.

The intervals the firms randomize on must be one interval. For simplicity, let us assume no

atoms in the support. The complete analysis that takes potential atoms into considerations

is in the appendix. If there is a gap in the intervals, two endpoints of the gap will form a

[l, r] such that one firm does not put any probability on it, yet the other firm best responds

at both l and r. This again contradicts Lemma 1.

Lemma 3 shows that there cannot be more than one atom for each player.

Lemma 3 (One Atom). In equilibrium, each firm has at most one atom in the support.

Again for simplicity, in this sketch of proof let us ignore the common interval and focus on

atoms. The complete proof is in the appendix. Suppose that firm A has two atoms a1 < a2.

Notice that the marginal benefit at these two points satisfy MB1 ≤MB2, but the marginal

costs are ranked MC1 > MC2. Therefore, it cannot be the case that both a1 and a2 are

optimal for firm A.

Lastly, the following lemma provides the last piece of characterization of support.
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Lemma 4 (Relationship). ãL, ãL and the common interval [α, β] satisfies the following

relationship:

If ãL, b̃R are both smaller than 1
2
, firm A’s atom is ãL and firm B’s atom is α; moreover,

ãL ≤ α < β < 1
2
and b̃R < β.

If ãL, b̃R are both greater than 1
2
, firm A’s atom is β and firm B’s atom is b̃R; moreover,

1
2
< α < β ≤ b̃R and ãL > α.

Proposition 3 characterizes the structure of support of mixed strategy equilibrium. Based

on that, the algorithm proposed below determines the exact [α, β], sizes of atoms, and how

each firm randomizes over this interval.

An algorithm to find MSNE:

Step 1. Compute ãL and b̃R. Thereom 1 tells whether there is PSNE. If there is no PSNE,

one of the following two cases happens:

Case 1: ãL < 1
2
and b̃R < 1

2
. According to Proposition 3, firm A’s support is ã ∪ [α, β] and

firm B’s support is [α, β]. Firm A has an atom of size pA at ãL and firm B has an atom of

size pB at α.

Step 2: On [α, β], each firm’s equilibrium strategy is characterized by the solution to a

system first-order differential equation. Specifically,

UA(z) =

∫ z

α

[1− z + x

2
]gB(x)dx+

∫ β

z

[
z + x

2
]gB(x)dx− cA(z) + pB ∗ [1− z + α

2
],

UB(z) =

∫ z

α

[1− z + x

2
]gA(x)dx+

∫ β

z

[
z + x

2
]gA(x)dx− cB(1− z) + pA ∗ [1− z + ãL

2
].

Corresponding first-order conditions are:

U ′A(z) = gB(z)(1− 2z) +
1

2
−GB(z)− c′A(z)− pB = 0,

U ′B(z) = gA(z)(1− 2z) +
1

2
−GA(z) + c′B(1− z)− pA = 0,
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where Gi(z;λi) is the probability of choosing a bid on [α, z], and gi(z) is the corresponding

probability distribution function.

Step 3: There are 6 unknowns in total: λA and λB are the constant in the solution to the

ordinary differential equations (ODE). pA and pB are sizes of atoms for each player, α and

β are the location of the common interval. They are simultaneously characterized by the

solution to the following equation system consisting of 6 equations, 4 of which are derived

from boundary conditions of the ODE:



GA(α) = 0

GA(β) = 1− pA

GB(α) = 0

GB(α) = 1− pB

(3)

The rest 2 equations are about the sizes of atoms: ã is optimal for firm A implies that

UA(ãL) = lim
a↓α

UA(a). (4)

α is optimal for firm B implies that

lim
b↑α

U ′B(b) = 0. (5)

Case 2: ãL > 1
2
and b̃R > 1

2
. According to Proposition 3, firm A’s support is [α, β] and firm

B’s support is [α, β] ∪ b̃R. firm A has an atom of size pA at β and firm B has an atom of

size pB at b̃R.

Step 2: On [α, β], each firm’s equilibrium strategy is characterized by the solution to a
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system first-order differential equation. Specifically,

UA(z) =

∫ z

α

[1− z + x

2
]gB(x)dx+

∫ β

z

[
z + x

2
]gB(x)dx− cA(z) + pB ∗ [

z + b̃R
2

],

UB(z) =

∫ z

α

[1− z + x

2
]gA(x)dx+

∫ β

z

[
z + x

2
]gA(x)dx− cB(1− z) + pA ∗ [

z + β

2
].

Corresponding first-order conditions are:

U ′A(z) = gB(z)(1− 2z) +
1

2
−GB(z)− c′A(z) = 0,

U ′B(z) = gA(z)(1− 2z) +
1

2
−GA(z) + c′B(1− z) = 0,

where Gi(z;λi) is the probability of choosing a bid on [α, z], and gi(z) is the corresponding

probability distribution function.

Step 3: There are 6 unknowns. λA and λB are the constant in the solution to ODEs. pA and

pB are sizes of atoms for each player, α and β are the location parameters of the common

interval. They are simultaneously characterized by the solution to the following equation

system consisting of 6 equations, 4 of which are derived from boundary conditions of the

ODE: 

GA(α) = 0

GA(β) = 1− pA

GB(α) = 0

GB(α) = 1− pB

The rest 2 equations are about the sizes of atoms: b̃R is optimal for firm B implies that

UB(b̃R) = limb↑β UB(b). β is optimal for firm A implies that lima↓β U
′
A(a) = 0.

The following example illustrates how the algorithm works.

Example: cA(d) = d2, cB(d) = 1
4
d2.

Step 1: According to the definition, ã = 1
4
and b̃ = 0. Since b̃ < ã < 1

2
, proceed as case 1.
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Step 2: At any point z ∈ [α, β], expected utility Ui(z) of firm i, given strategy of firm j, are

the following:

UA(z) =

∫ z

α

[1− z + x

2
]gB(x)dx+

∫ β

z

[
z + x

2
]gB(x)dx− cA(z) + pB ∗ [1− z + α

2
]

UB(z) =

∫ z

α

[1− z + x

2
]gA(x)dx+

∫ β

z

[
z + x

2
]gA(x)dx− cB(1− z) + pA ∗ [1− z + ã

2
]

First order conditions are:

U ′A(z) = gB(z)(1− 2z) +
1

2
−GB(z)− 2z − pB = 0 (6)

U ′B(z) = gA(z)(1− 2z) +
1

2
−GA(z) +

1

2
(1− z)− pA = 0 (7)

where Gi(z) is the probability of choosing a bid on [0, z], and gi(z) is the corresponding prob-

ability distribution function. Solutions to these differential equations, namely equilibrium

strategies, are:

GA(z) =
λA√

1− 2z
+

1

6
z +

1

6
− pA

GB(z) =
λB√

1− 2z
− 2

3
z − 1

6
− pB

, where λi is the constant in solutions to ODEs.

Step 3: All six unknowns (α, β, pA, pB, λA, λB) are determined by two sets of conditions.

The first set of condition is boundary conditions:



GA(α) = 0

GA(β) = 1− pA

GB(α) = 0

GB(β) = 1− pB

=⇒



λA√
1−2α

+ 1
6
α + 1

6
= pA

λA√
1−2β

− 1
6
β + 1

6
= 1

λB√
1−2α

− 2
3
α− 1

6
= pB

λB√
1−2β

− 2
3
β − 1

6
= 1

(8)
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Optimality at ãL for firm A and optimality at α for firm B establish the relationship between

atom sizes and location of the intervals:
pA = 1− α

2

pB = 1
4

+ 1
2
α

(9)

All six equations in (8) and (9) pins down all parameters: (α, β, λA, λB, pA, pB) ≈ (0.4607, 0.4808, 0.1475,

0.2912, 0.7696, 0.5652). Equilibrium strategies (GA, GB) are plotted in Figure 4

Figure 4: mixed strategy equilibrium in the example

0.0 0.2 0.4 0.6 0.8 1.0
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Proposition 4 shows that any strategy obtained by the algorithm is indeed an equilibrium.

Proposition 4. Any strategy profile that is generated by the algorithm is a mixed strategy

equilibrium.

Proof. Proof of case 1 is presented here. Case 2 can be proved in a similar way. Suppose

that we obtain (GA, GB) through equation (3)∼(4). By construction, player A gets the same

payoff on ãL∪ [α, β]. Player A has no profitable deviation to [0, α) because player B chooses

b > α with probability 1 and ãL is the best response to GB on [0, α). Player A has no

18



profitable deviation to (β, 1) because player B chooses b ≤ β with probability 1. Therefore,

any design a > β is strictly dominated by β for player A.

For player B, first notice that b̃R ≤ β, which implies player B has no profitable deviations

to (β, 1] because player A chooses a < β with probability 1 and b̃R is the best response to

that. Player B also has no profitable deviations to [0, α). For b ∈ (ãR, α), because of (5)

and strict concavity of expected utility, player B has no profitable deviations to (ãR, α).

Since both players have no profitable deviations, (GA, GB) is a Nash equilibrium.

Lastly, proposition 5 talks about uniqueness.

Proposition 5. Every creative contest has a unique regular Nash equilbrium, characterized

by Theorem 1 and the proposed algorithm.

4 Application — Information Disclosure

As an application of the framework I have developed, I examine the following question. If the

contest organizer could strategically choose whether to disclose her ideal design s∗. Would

she want to do so? This section shows that the answer is sometimes “no.”

4.1 Setting

Consider a symmetric creative contest in which firms have initial designs α0 = 0 and β0 = 1

and the same quadratic cost function c(d) = td2.

The contest organizer aims to minimize the distance between the winning design and her

ideal design. When the winning design is sw, her utility is uo(sw; s∗) = −|sw − s∗|. Prior to

learning her ideal design s∗, the contest designer commits whether to disclose it or not.4

4This commitment assumption is in line with the information design literature [see, for example, Kamenica
and Gentzkow (2011)].
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4.2 Concealing s∗

When s∗ is concealed, two firms compete in a symmetric creative contest. According to

Proposition 2, PSNE always exists. When costs are high (t > 1
2
, or ã = 1

4t
< 1

2
), both firms

move 1
4t

towards each other. When costs are low (t ≤ 1
2
), both firms move to exact 1

2
.

4.3 Disclosing s∗

Solving for equilibria when s∗ is disclosed is harder than it may initially appear because of

the interaction between potential head starts and bid caps.

To demonstrate, consider the following scenario: when s∗ is revealed to be 0.6, this means

firm B is now the advantaged firm because his initial design is closer to s∗ compared with

firm A. The difference in their distances to s∗, ∆ = |s∗ − (1− s∗)| = 0.6− (1− 0.6), is the

size of the head start firm B has. Equilibrium analysis of standard all-pay contests with the

sole presence of head starts can be found in Siegel (2014) and Zhu (2019).

To see why bid caps might be in effect, consider any case where costs are close to zero. Both

firms choose s∗ with probability one in equilibrium. Notice that both firms do not gain extra

probability of winning by over investing. Therefore, s∗ is effectively a bid cap for both firms.

Equilibrium analysis of standard all-pay contests with the sole presence of bid caps can be

found in Che and Gale (1998).

Figure 5 above illustrates the most complicated case when t is moderate. It shows asymmetry

level ∆ = |s∗ − (1 − s∗)| affects equilibrium structure due to the interactions between bid

caps and head starts. Detailed equilibrium strategies along with a more general version of

the analysis are included in Appendix F. Because of symmetry, let us focus on s∗ > 1
2
.

• When ∆ is large enough, the head start is large enough such that the weaker player,

firm A, has no incentive to compete at all. Therefore both firms make no effort in

equilibrium. The threshold, ∆4, satisfies c(∆4) = 1.
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Figure 5: 5 cases of asymmetry levels ∆

0 1∆1 ∆2 ∆3 ∆4

BC only Two pts CG HS Both Out

BC hit BC not hit

• As ∆ decreases, there is a level of asymmetry below which the “implicit bidding cap"

is hit. This threshold ∆3 is characterized by c(s∗) = c(1+∆3

2
) = 1.

• When ∆ is close enough to zero, both firms choose s∗ in equilibrium. This happens

when ∆ ≤ ∆1, which is characterized by c(s∗) = c(1+∆1

2
) = 1

2
.

• Unlike Che and Gale (1998), there is another threshold ∆2 between ∆1 and ∆3. Below

this threshold, in equilibrium each firm randomizes on two submissions: their featured

design and s∗. When ∆ > ∆2 , in equilibrium firms randomize in a similar way to Che

and Gale (1998). This threshold ∆2 is determined by equating the size of the head

start and the upper bound of the interval on which both firms randomize.

Once we know equilibrium strategies, namely how to firms compete, we can then calculate

the distribution of the winning submission and the organizer’s utility. Figure 6 below plots

organizer’s utility for different s∗ when cost parameter t is low, moderate and high.

In these figures, we can see that when adjustment costs are low, disclosing the ideal design

yields the first-best outcome for the contest organizer because no matter where the ideal

design is, the winning design will match it. In the middle panel, where adjustment costs are

moderate, disclosure of the ideal design is beneficial if it is close to the 1
2
. When the ideal
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Figure 6: point-wise policy comparison for different t
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design is close to one of the firms, disclosure discourages both firms from competing and

therefore makes the contest organizer worse off. Comparing between the middle and right

panel, we can see that his discouragement effect is more salient when adjustment costs are

higher, as disclosure makes the organizer worse off for a wide range of s∗ in the right panel.

Notice that when the organizer makes disclosure decisions, she does not know the realized

value of s∗. Therefore, her ex-ante expected utility will be the average utility over different

s∗, which will be discussed in the next section.

4.4 Policy Comparison

In this section, I compare the organizer’s utility under no disclosure and full disclosure, and

conclude that information disclosure is beneficial to the organizer only when adjustment

costs are low.

Proposition 6. There is a threshold t∗. When t < t∗, disclosing s∗ makes the organizer

better off by disclosing s∗. When t > t∗, disclosing s∗ makes the organizer worse off.

Figure 7 plots the organizer’s expected utility under two policies. The organizer benefits from

disclosing s∗ when adjustment costs are low. There is, however, a countervailing force: once

the organizer’s ideal design is disclosed, one firm will have an advantage, which discourages

the opponent from competing. In consequence, the advantaged firm has weaker incentives to

compete. This discouragement effect dominates the benefit of disclosing when adjustment
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costs are high. Therefore, when t > t∗ ≈ 20.54, disclosing the ideal design makes the

organizer worse off.

Figure 7: policy comparison: Disclose vs Conceal with different adjustment costs
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5 Laboratory Experiment

Thus far, I introduced a model in which contestants were uncertain about the contest or-

ganizer’s preferences. As an application, I have also investigated whether or not a contest

organizer should disclose her preferences and I found that disclosure is not always optimal.

Two concerns arise about my model’s relevance beyond theory. One concern is that the

model assumes rationality and risk neutrality, which are usually not satisfied in the field.

Another concern is that the experimental literature has found that subjects tend to overbid

in contests and if subjects also overbid in creative contests, specifically, then the model’s

welfare prediction about information disclosure may no longer hold.5

To address these concerns, I conduct a laboratory experiment and ask the following ques-

tions: How well does the model predict subjects’ behaviors? Do subjects overbid in creative

contests? And does the welfare prediction about information disclosure hold in the lab?
5Overbid in this context means that subjects adjust more than the equilibrium predicts.
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5.1 Experimental Design

I framed the experiment as a location choice problem. Compared with the creative contest

framing, this framing is equivalent in theory but allows me to control for subjects’ adjustment

costs and to quantify the their efforts. Specifically, each subject acted as a shop owner and

was paired with another subject. One of them was located at Location 0 of a street of and the

other was at Location 100. They decided how much to spend on moving to a new location to

attract a consumer. Moving costs were quadratic in moving distance. Specifically, moving

to Location x cost tx2 to subjects initially located at 0 and t(100− x)2 to subjects initially

located at 100, where t is a cost parameter. Subjects in a group made simultaneous moving

decisions. After that, a programmed consumer arrived at a location and brought a payoff of

100 points to the closest shop owner. Figure 8 shows a decision screen. As subjects moved

their mouses, a box updated the corresponding costs in real time.

Figure 8: decision screen

I implemented a between-subject 2× 2 design, summarized in Table 1. The first treatment

variable is subjects’ knowledge about consumer’s locations. In the Conceal treatments (C,
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for short), subjects(i.e. shop owners) were not aware of consumers’ locations, but expected

that consumers would arrive at given any location with equal probability. In the Disclose

treatments (D, for short), the exact locations of the consumers were known to the subjects.

Table 1: experimental design summary

Treatment Name Location Disclosed Moving Cost # of Sessions # of Subjects
CH No High 2 60
CL No Low 2 60
DH Yes High 3 60
DL Yes Low 3 60

Another treatment variable is (subject-incurred) moving cost. Translating results in Section

4.4 into the location choice framing, when moving costs are low, the consumer is better off

by disclosing her location. When shops’ moving costs are high enough, however, disclosing

locations makes the consumer worse off, because the shop owner may decide that a move is

not worthwhile. However, the threshold value is so high that when used, subjects can hardly

afford any move.6 Besides, the predicted gain to consumers for concealing information is

positive in theory, but almost indistinguishable; it is likely to be overshadowed by the noisy

behaviors in the experiment. As a workaround, I chose low- and high- cost parameters to

be 1.25% and 8%.7 In other words, moving a distance of d costs 0.0125 × d2 in Low-cost

treatments and 0.08×d2 in High-cost treatments (L and H for short). With these parameters,

theory predicts that when moving costs are low, the benefit to consumers of disclosing their

location is sizable. When moving costs are high, meanwhile, the benefit of disclosing their

location is close to zero, as Figure 7 shows.

I conducted a balanced design across all 4 treatments. Each treatment consisted of 2 or 3 in-

dependent sessions, adding up to 60 subjects. At the beginning of each session, subjects were

randomly assigned into groups of 2, which remained fixed across all 40 periods. Two of the

40 periods were randomly selected for payment. After subjects finished their location-choice
6At the threshold costs predicted by the theory, maximum affordable moving distance is 2.7 and equilib-

rium moving distance is 1.25. Recall that the length of the street is 100.
7This corresponds to t = 1.25 and t = 8 in the model.
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tasks, they completed 10 incentivized Holt and Laury (2002) lottery choices, followed by a

post-experiment survey about demographics and personality traits. A sample of instructions

is included in Appendix H.

Besides holding treatment size constant, I also controlled for the 40 locations where con-

sumers arrived in the following way: first, I randomly drew 40 locations from U [0, 100] prior

to the start of the first session. Next, I derived 30 random permutations of the 40 locations

and then I one-to-one mapped 30 groups in any treatment to these 30 permutations.

In total, I conducted 10 independent computerized sessions (programmed in oTree) at the

CBER lab at Wuhan University from March 2019 to May 2019. All 240 subjects were

students at Wuhan University. Each session lasted about 70 minutes and the average earning

was ¥52 (about $7.6), including a show-up fee of ¥10 (about $1.5).8

5.2 Results

Figure 9: average moving distance by period
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8As a reference, Beijing and Shanghai, two of the biggest cities in China, have minimum hourly wages of
¥24 and ¥22 in 2019.
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Figures 9 plots the relationship between average moving distance and period in the 4 treat-

ments. In the graph, subjects’ moving distances exhibit decreasing trends during the first 20

periods and seems to stabilize at Period 20. Therefore, I will focus the rest of the analyses

on Periods 21-40.

Moreover, in all individual-level analyses, I will flip decisions made by subjects who are

initially located at 100. For instance, if a subject with an initial location 100 moves to

Location 80 when the consumer at Location 60, the decision will be treated as if the subject

is with an initial location 0 and moves to Location 20 (100-80) when the consumer is at

Location 40 (100-60).

The analyses are presented as follows. Section 5.2.1 focuses on individual behavior and

examines comparative static predictions derived from the theory. Section 5.2.2 is focused on

group-level performance and tests the welfare prediction regarding information disclosure.

Section 5.2.3 discusses whether subjects overbid in creative contests, and it documents two

findings related to overbidding.

5.2.1 Moving Distances

This section analyzes subjects’ behavior at the individual level. First, I inspect moving

decisions in the two Conceal treatments. Figure 10 plots the average moving distance when

consumers are ex-post revealed at different locations. The theory predicts that firms move

3.125 units in the CH treatment and 20 units in the CL treatment in equilibrium, these

predictions indicated by solid horizontal lines. In other words, subjects move more when

moving costs are low. This prediction is supported by experimental data and formalized

below.

Result 1: In the conceal treatments, subjects move more when moving costs are low.

Support: Subjects in CH treatment move 6.49 on average, which is significantly lower

than 30.89 in CL treatment. (p-value is less than 0.001, two-sided t-test)
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Figure 10: conceal treatments: moving distance vs consumer locations
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Notes: Solid lines depict Equilibrium predictions.

Moving to the two Disclose treatments, theoretical predictions about equilibrium behaviors

are more complicated. Figure 11 plots the average moving distance when consumers are

disclosed at different locations. The solid lines show equilibrium predictions and follow a

similar pattern. When the consumer is disclosed to be close to one of the subjects, neither of

the subjects has any incentive to move; disclosing the location creates a large advantage for

one subject while simultaneously making it clear that it is too costly for the other subject to

attempt to catch up. On the other hand, when the consumer is disclosed to be close to the

midpoint, the two subjects are at similar distances from the consumer, and, consequently,

they compete hard for the prize, randomizing over a range of locations. In this case, the

mean of the equilibrium strategy is plotted in the figure. Detailed analysis can be found in

Section 4.3 and Appendix F.

The hollow symbols represent the average moving distance of all subjects who share the same

distance from a consumer. We can observe that on average, subjects’ moving distances re-

spond to consumer locations in a way that is broadly consistent with equilibrium predictions,

as formalized in the following result.

Result 2: Subjects move more as the consumer is further away, as long as the distance to

the consumer is below a particular threshold. When the distance to the consumer is above
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Figure 11: disclose treatments: moving distance vs consumer locations
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Notes: Solid lines depict equilibrium predictions.

the threshold, moving distance decreases. 9

Support: I explain in detail how I analyze the data in the DH treatment.

Let Distit denote subject i’s distance from a consumer in period t, and Moveit denote subject

i’s moving distance in period t. Following the theoretical predictions, I construct two dummy

variables. Farit equals 1 if the consumer is close to one player, namely Dist< 32.32 or

Dist> 67.68. Theory predicts that if Farit = 1, Moveit = 0. Another dummy is I(Dist>50),

which captures the different impact of consumer locations on Moveit.

I run the following panel regression:

Moveit = α + Distit(β0 + β1I(Dist>50)it + β2 × Farit + β3 × Farit × I(Dist>50)) + γControli + vit

Because my focus is on how distances to consumers affect subjects’ move decisions, the

main parameters of interest are β0 and β1. β0 captures the marginal effect of distance from

consumers on moving decisions when distances are below the threshold. β0 +β1 captures the

marginal effect of distance from consumers on moving decisions when distances are above

the threshold. Table 2 summarizes the regression results and shows that β̂0 = 0.972 and
9The threshold distance is 50 in the DH treatment and 67.68 in the DL treatment.
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β̂1 = −1.724. H0 : β0 = 0 and H0 : β0 + β1 = 0 are both rejected at 5% significance level

(p-values are both smaller than 0.001, two-sided t-test and Wald test, respectively).

5.2.2 Consumer Welfare

This section analyzes group level data and examines whether the consumer might benefit

from disclosing her location. According to the theoretical predictions in Section 4.4, given

the cost parameters in the experiment, the benefit attendant to location disclosure is positive

but marginal, and ultimately insignificant, when moving costs are high. The benefit is more

substantial (and is significant) when moving costs are low.

Figure 12 plots the mean of consumers’ welfare in different treatments, with error bars

representing 95% confidence intervals. In the figure, we can see that in both high cost and

low cost scenarios, disclosing location improves consumers’ welfare. The improvement is

statistically insignificant when moving costs are high, but it is statistically significant when

moving costs are low.

Result 3: Consumer’s welfare gain is positive but insignificant when moving costs are high.

The gain is significant when moving costs are low.

Support: I calculate consumer’s average welfare in each group in the last 20 periods, and

then compare between treatments.

When moving costs are high, disclosing locations brings the average consumer’s welfare from

-20.07 (the CH treatment) to -19.28 (the DH treatment). The welfare gain is 0.79, which is

not significant. (p-value is 0.36, two-sided t-test).

When costs are low, disclosing locations brings the average consumer’s welfare from -17.77

(the CL treatment) to -2.30 (the DH treatment). The welfare gain is 15.48, which is signifi-

cant. (p-value is less than 0.001, two-sided t-test).
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Table 2: panel regressions of moving distance on distance to the consumer

Dependent variable:

Move

(1) (2)

Constant −26.934∗∗∗ −25.291∗∗∗
(4.497) (4.688)

Dist 0.973∗∗∗ 0.972∗∗∗
(0.123) (0.122)

Dist×I(Dist>50) −1.724∗∗∗ −1.724∗∗∗
(0.211) (0.211)

Dist×Far −0.912∗∗∗ −0.912∗∗∗
(0.122) (0.121)

Dist×Far×I(Dist>50) 1.660∗∗∗ 1.661∗∗∗
(0.210) (0.210)

I(Dist>50) 78.392∗∗∗ 78.437∗∗∗
(11.385) (11.400)

Far 26.819∗∗∗ 26.764∗∗∗
(4.541) (4.484)

I(Dist>50)×Far −77.449∗∗∗ −77.573∗∗∗
(11.396) (11.417)

Controls NO Yes

Observations 1,200 1,200
Groups 60 60
R2 0.403 0.404
Adjusted R2 0.399 0.400
F Statistic 803.965∗∗∗ 807.110∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
standard errors clustered at individual level

Dist distance to the consumer
Far dummy; equals 1 if |Dist-50|>17.68
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Figure 12: consumer’s welfare comparison: Conceal vs Disclose
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5.2.3 Overbidding

The experimental literature has found that, in may instances, lab subjects tend to overbid in

contests. In this section, I analyze overbidding behavior in my experiment and highlight two

new phenomena that may be worth more attention in the future. I use the term “overbid”,

here, when a subject in my experiment moves more than the equilibrium predicts.10

Table 3 summarizes both the fraction and the scale of overbidding in each treatment. When

calculating the fraction, I identify a decision to be overbidding if the moving distance is 20%

more than the equilibrium predicts. 11

Result 4a: Overbidding is reduced when consumer locations are disclosed.

Support: We can see from Table 3 that subjects overbid in all treatments. The discrepancy
10In the disclose treatments, when the equilibrium is mixed strategies, the benchmark is the mean of the

equilibrim strategy.
11Recall that equilibrium prediction is 3.125 in the CH treatment and 20 in the CL treatment.
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Table 3: overbidding in different treatments

All CH DH CH vs DH CL DL CL vs DL
Obs. 240 60 60 60 60

Avg. Sizea 4.03 3.36 1.32 10.89 0.56
p < 0.001 p < 0.001 p = 0.008 p < 0.001 p < 0.001 p = 0.362 p < 0.001

Fractionb 53.75% 61.67% 61.67% 76.67% 15.00%
p < 0.001 p < 0.001 p < 0.001 p > 0.999 p < 0.001 p < 0.001 p < 0.001

a Avg. moving distance above equilibrium. p-values from two-sided t-test.
b Percentage of individuals who overbid. p-values from two-sided propotion test.

between equilibrium prediction and subjects’ decisions is significant in all except the DL

treatment. When comparing the size of overbidding between the Disclose treatments and the

Conceal treatments, I find that when costs are high, disclosing consumer locations reduces

overbidding by 3.36 − 1.32 = 2.04, which is statistically significant. (p-value is less than

0.001; two-sided t-test). When costs are low, disclosing locations reduces overbidding by

10.89− 0.56 = 10.33, which is statistically significant. (p-value is less than 0.001; two-sided

t-test)

Next, I focus on the two Disclose treatments, because Figure 10 seems to suggest that

overbidding behaviors are different when subjects are disclosed to have an advantage vs.

when they are disclosed to have a disadvantage. This observation is verified and summarized

below.

Result 4b: In two conceal treatments, subjects overbid less when they are disadvantaged.

Support: I divide data in each Disclose treatment into two parts. For example, an ob-

servation is in DH+ if the consumer is disclosed closer to the subject, namely Distit < 50.

Similarly, an observation is in DH− for observations in which the consumer is disclosed closer

to the opponent, namely Distit > 50. Notice that a subject could be in DH+ in some periods,

and in DH− in the other periods.

I then use paired t-test to see whether there is a difference in overbidding when subjects are

in different positions. Table 4 summarizes the results.
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Table 4: Overbidding in disadvantageous and advantageous positions

DH+ DH− DH+ vs DH− DL+ DL− DL+ vs DL−

Obs. 60 60 60 60

Avg. Size 2.49 0.16 2.51 -1.33
p < 0.001 p = 0.709 p < 0.001a p < 0.001 p = 0.174 p < 0.001a

DH+ and DL+ Periods when distances to consumers are less than 50 in respective treatments.
DH− and DL− Periods when distances to consumers are more than 50 in respective treatments.

a These p-values are from two-sided paired t-test.

From the table, we see that in the DH treatment, subjects on average overbid 2.49 when

they are advantaged, which is significantly greater than 0.16 when they are disadvantaged.

(p-value is less than 0.001, two-sided t-test).

In the DL treatment, subjects on average overbid 2.51 when they are advantaged, which is

significantly greater than -1.33 when they are disadvantaged. (p-value is less than 0.001,

two-sided t-test).

5.3 Experiment Takeaways

In summary, the experimental results deliver two messages. First, subjects’ overbidding

behavior is robust. Notice that the experiment departs from the contest literature in the

following sense: it is framed in a Hotelling model and it is more challenging to for subjects to

learn in this experiment. In the Conceal treatments, subjects are uncertain about where the

consumers will be, while in the Disclose treatments, subjects are faced with different disclosed

consumer locations. Despite these departures, I find that the average sizes of overbidding are

positive in all four treatments, and significant in all but the DL treatment. I also discover two

phenomena pertaining to overbidding: disclosing locations reduces overbidding, and being

disclosed to be in a disadvantaged positions further reduces overbidding.

The second message in these results is that, although subjects overbid in the experiment, the

experimental data are consistent with the model’s predictions. This finding offers supporting

evidence about the model’s empirical relevence.
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6 Extensions and Discussions

6.1 Model Generalization

All equilibrium characterization results go through when α0 and β0 are not restricted.

In the previous analysis, I characterize the equilibrium using only ãL and b̃R from Definition

1. The other two definitions ãR and b̃L, are needed when initial designs α0 and β0 are not

at endpoints.

Parallel to Theorem 1, PSNE is characterized as follows.

Theorem 1’. The unique PSNE is (1
2
, 1

2
) if and only if ãL ≥ 1

2
≥ b̃R and ãR ≤ 1

2
≤ b̃L.

The unique PSNE is (ãL, b̃R) if and only if ãL < b̃R, UA(ãL, b̃R) ≥ lima↓b̃R UA(a, b̃R) and

UB(ãL, b̃R) ≥ limb↑ãL UB(ãL, b̃R). In other cases, there exists no PSNE.

The only difference from Theorem 1 is the addition of ãR ≤ 1
2
≤ b̃L as a condition when

(1
2
, 1

2
) is a PSNE. It is always satisfied when α0 = 0 and β0 = 1 because ãR = 0 and b̃L = 1

in this case.

To see why ãR ≤ 1
2
≤ b̃L is true in an PSNE, suppose ãR > 1

2
. (1

2
, 1

2
) can not be an equilibrium

because firm A is better off by deviating from 1
2
to ãR. Similarly, if b̃L < 1

2
, firm B is better

off by deviating from 1
2
to b̃L.

Parallel to Proposition 3, support of MSNE is characterized as follows.

Proposition 3’: In equilibrium, both firms continuously randomize on a common interval

[α, β]. Moreover, each firm has at most one atom:

1. If ãL > b̃R and ãR > 1
2
, firm A’s atom is ãR and firm B’s atom is β, satisfying

ãR > β > α > 1
2
.

2. If ãL > b̃R and b̃L < 1
2
, firm A’s atom is α and firm B’s atom is b̃L, satisfying b̃L < α <

β < 1
2
.
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3. Otherwise, the same as in Proposition 3.

Again, when α0 = 0 and β0 = 1, cases 1 and 2 in Proposition 3’ can not occur.

Lastly, Assumption 1 can be relaxed to the following assumption.

Assumption 1’: ci is increasing, twice differentiable, and strictly convex.

All results, except for the direct proof of existence of regular MSNE in Appendix E, extend

with Assumption 1’. It is challenging to prove the existence of regular MSNE when Assump-

tion 1’ is satisfied, but I conjecture it to be true because all existing all-pay contest models

satisfying Assumption 1’ have regular MSNE.

6.2 Applications in Other Fields

In this paper, I have demonstrated two applications of the model in contest settings. This

model can be applied in many other fields as well. One such field is industrial organization,

in which the model is a generalization of a Hotelling location model. It can be used to

understand interactions between upstream and downstream firms in a supply chain. For

example, an upstream firm wishes to procure products from one of two potential suppliers.

The upstream firm can either be specific or vague about its needs, and the two suppliers will

create prototypes, then, based on which one of the suppliers will be picked. With appropriate

empirical data, my model can help quantify the impact of information disclosure in supply

chains.

Another topic my model speaks to is electoral voting, as in Wittman (1983) and Calvert

(1985). Two candidates participate in an election by each choosing a policy as a platform.

According to the median voter theorem, under a majority-rule voting system, the winner

is selected by the median voter. Because the adjustment costs in my model always depend

on firms’ own submissions, my model does not precisely combine both office and policy

motivations. However, instead, it can be interpreted as a voting model with office-motivated
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candidates, who need to pay a cost to change platforms (e.g. advertising or campaigning

costs).

7 Conclusion

This paper introduces a simple model of creative contests, in which participants are uncertain

about the organizer’s preferences. I characterize the unique Nash equilibrium. As an appli-

cation, I consider whether the contest organizer should disclose her ideal design, and I find

that disclosing is not always optimal, as it creates asymmetry between firms and hence dis-

courages competition. Based on this model, I also conduct a laboratory experiment and find

that, although subjects overbid, experiment results are broadly consistent with comparative

static predictions and with the welfare prediction about information disclosure.

This study points toward several directions for future research. One direction is to consider

a contest organizer’s optimal disclosure policy either in the Bayesian persuasion framework

[Kamenica and Gentzkow (2011)] or in the disclosure game framework [Grossman (1981)

and Milgrom (1981)]. Another direction is to utilize the model in laboratory experiments

involving creativity, as in Charness and Grieco (2018) and references therein. Lastly, as

discussed in Section 6.2, the model can be applied to other fields. For example, it speaks to

an electoral voting setting, wherein office-motivated candidates faces costs for changing their

platforms, or to an industrial organization setting, wherein an upstream firm decides whether

it should specify its needs when procuring products from multiple downstream firms.
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Appendices

A Proof of proposition 1

First, I include Theorem 5 of Dasgupta and Maskin (1986) as Lemma 5 below.

Lemma 5. Let Ai ⊂ R1 (i = 1, . . . , N) be a closed interval and let Ui : A → R1 (i =

1, . . . , N) be continuous except on a subset A∗∗(i) of A∗(i), where A∗(i) is explained below.

Suppose
∑N

i=1 Ui(a) is upper semi-continuous and Ui(ai, a−i) is bounded and weakly lower

semi-continuous in ai. Then the game [(Ai, Ui); i = 1, . . . , N ] possesses a mixed-strategy

equilibrium.

Definitions in Lemma 5:

1. A∗(i) is continuous manifold of dimension less than N containing discontinuous points

A∗∗(i).

2. Ui(ai, a−i) is weakly lower semi-continuous in ai if ∀āi ∈ A∗∗i (i), ∃λ ∈ [0, 1] such that

∀a−i ∈ A∗∗−i(āi), λ lim infai↑āi Ui(ai, a−i) + (1− λ) lim infai↓āi Ui(ai, a−i) ≥ Ui(āi, a−i)

To apply Lemma 5, I verified that all conditions are met in creative contests. Ai = [0, 1],

A∗(i) = {(x, x) : x ∈ [0, 1]} and A∗∗(i) = A∗(i)\{(1
2
, 1

2
)}. ∑

Ui(a) is continuous because

it is a fixed prize minus sum of costs. Ui is bounded because both the prize and costs

are bounded. To see Ui(a) is weakly lower semi-continuous, note that A∗∗−i(āi) = {āi},

and moreover Ui(āi, āi) always lies between limai↑āi Ui(ai, āi) and limai↓āi Ui(ai, āi). There

exists λ, either 0 or 1, such that inequality in the definition of weakly lower semi-continuous

holds. Because all conditions in Lemma 5 are all satisfied, every creative contest has a Nash

equilibrium.

B Proof of Claim 1

First I prove there are only two candidate PSNE.
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Lemma 6. Every creative contest has only two candidate PSNE: (1
2
, 1

2
) and (ãL, b̃R).

Proof. I first prove a weaker result. That is, in equilibrium, players strategy must weakly

reserve the order of their initial designs.

Claim 3. Every pure strategy Nash equilibrium (a∗, b∗) in creative contests satisfies a∗ ≤ b∗.

Proof. Suppose otherwise there exists a pure strategy Nash equilibrium with a∗ > b∗. If

a∗ > α0, then firm A is better off reducing his adjustment. This will increase his chance of

winning, reduce his bidding cost and therefore yield a higher expected utility. On the other

hand, if a∗ ≤ α0, this implies b∗ < a∗ ≤ α0 < β0. By similar reasoning, firm B is better off

reducing his adjustment. Therefore, a∗ > b∗ always leads to contradictions.

This completes the proof that in a pure strategy Nash equilibrium, it must be a∗ ≤ b∗.

Now I examine the case of a∗ = b∗ and a∗ < b∗ separately. When a∗ = b∗ is an equilibrium,

they must both equal 1
2
, otherwise both firms strictly prefer one side to another, while cost

difference is negligible by continuity.

When a∗ < b∗ is an equilibrium, it must be a∗ ≥ α0 because otherwise a∗ is strictly dominated

by α0 because the latter increases probability of winning while decreases adjustment costs.

Similar logic implies b∗ ≤ β0. By definition of ãL and b̃R, it must be a∗ = ãL and b∗ = b̃R.

By Lemma 6 and Claim 3, when ãL ≥ b̃R, the only PSNE candidate is (1
2
, 1

2
). When ãL < b̃R

either ãL < 1
2
or 1

2
< b̃R, or both are true. Either firm A has a profitable deviation to ãL or

firm B has a profitable deviation to b̃R, or both. Consequently, (1
2
, 1

2
) is not an equilibrium.

C Proof of Proposition 3

I formally prove Lemma 2 to Lemma 4 below.

Let SPi, CIi, and IPi denote player i’s support, unions of closed intervals and unions of

closed isolated points.
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Proof of Lemma 2: To show in equilibrium, both firms randomize on one common intervalin

the following steps:

Step 1. Sets of Intervals are nonempty and coincide with each other. That is, CI1 = CI2 6=

∅.

First I prove that they cannot both be empty. Suppose it is true, it implies that both

firms’ best response sets only consist of isolated points. Because there is no equilibrium

in pure strategy, at least one of them, say IP1, contains more than two points. Suppose

IP1 = {s(1)
1 , . . . , s

(1)
n1 } where s(1)

k is strictly increasing in k. Then IP2 must have the following

property: there exists one and only one element in IP2 between every two consecutive

elements in IP1. Moreover, in IP2, there is no point that is less than s(1)
1 and there is exactly

one point that is greater than s(1)
n1 . These two properties come from Lemma 1, increasing cost

functions and the fact that α0 < β0. This leads to a contradiction because of s(1)
1 < s

(2)
1 < s

(1)
2 :

s
(1)
1 < s

(2)
1 implies α0 < s

(1)
1 and s(1)

1 being optimal means the marginal gain and marginal

costs are equal at this point. At s(1)
2 , however, the marginal gain is less than that at s(1)

1

while the marginal costs are greater. Hence marginal gain is strictly less than marginal cost

at s(1)
2 . In other words, firm A has incentive to move to the left and therefore s(1)

2 cannot be

optimal.

Next I show that given that at least one of them is non-empty, IP1 and IP2 must coincide.

Suppose otherwise, there exists an interval (l, r) belonging to CI1 but not to CI2. Because

firm 2’s support contains finite isolated points, it is without loss to assume (l, r) does not

contain any of them. (l, r) then violates Lemma 1.

This completes the proof that in a mixed strategy equilibrium, firms must randomize on

some common intervals.

Step 2: 1
2
is not in any firm’s support. That is, 1

2
6∈ SPi.

Suppose otherwise, without loss assume 1
2
∈ SP1, which implies either 1

2
∈ IP1 or 1

2
∈ CI1.

First I show 1
2
6∈ IP1. Suppose otherwise, by the previous step, there exists some interval
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in the support. Without loss assume that [l1, r1] is the rightmost interval on the left of 1
2
.

r1 <
1
2
implies that both firms cannot have atoms at r1. Consider the smallest element in

IP1 ∪ IP2 ∩ (r1,
1
2
] and denoted it as s1. It’s not empty because 1

2
belongs to the set. Then

r1 and s1 violates Lemma 1, contradiction.

Next I prove that 1
2
6∈ CI1. 1

2
is special for the following reason: consider firm1, moving from

s to its immediate right has two source of marginal gain — marginal gain from local mass

and marginal gain from global mass. Marginal gain from global mass is capped by 1
2
and

decreases in s. Marginal gain from local mass is equal to the density of its opponent and

the location of s. When s = 1
2
, this marginal gain is always zero. Let’s look at two cases:

(1) when 1
2
is an interior point of the support and (2) when 1

2
is the boundary point. First

suppose that both firms get their equilibrium payoff in an open neighborhood of 1
2
. Due to

continuity of cost, for the two firms, their probabilities of choosing s < 1
2
and s > 1

2
must

equal. This in turn makes equal the marginal gain of moving to both directions starting

from 1
2
. That is, marginal gain of moving from 1

2
to 1

2
−ε and 1

2
+ε is symmetric. However,

marginal cost cannot be symmetric due to convexity of cost functions, unless α0 = 1
2
. The

same logic applies to firm2 as well since CI1 = CI2 from the first step. As a result, it’s not

possible that both firms randomize continuously around 1
2
. Next to see that 1

2
cannot the

boundary of some interval either, without loss assume there exists a increasing sequence {lk}

converging to 1
2
such that firm1 gets equilibrium payoff at each points, while firm1 does not

get equilibrium payoff on (1
2
, 1

2
+ε) for some small ε. This implies that α0 <

1
2
. Now consider

{lk} ∩ (α0,
1
2
). Notice that as lk move closer to 1

2
, global marginal gain decreases because

firm2 puts more mass on s < lk as lk increases. Local marginal gain also decreases because

at 1
2
the marginal gain is zero. However, marginal costs are increasing. This contradicts the

assumption that all lk’s are optimal for firm 1.

This completes the proof that 1
2
cannot be in any firm’s support.

Step 3. There is only one interval in the support. That is, CI1 = CI2 = [α, β].
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Suppose that CIi contains more than one interval. In other words, there are gaps in the

support. I first show there cannot be any isolated points in these gaps. After that I will

prove these intervals must be connected.

Suppose CIi = ∪nk=1[ak, bk], where n > 1 and ak+1 > bk. Consider any gap (bk, ak+1). For

notation simplicity, let l = bk and r = ak+1. First there can’t be atoms at both l and r

because an atom at l requires l > 1
2
while atom at r requires r < 1

2
. These two cannot

hold simultaneously because l < r. Moreover, at most one firm could have atom every point

since we have proven that 1
2
is not in the support. Combining these two, we can without

loss assume neither of these firms has atom at r and firm2 doesn’t have an atom at l. This

implies firm1 gets his equilibrium payoff at both l and r. For both l and r to be optimal,

there must exist some points from IP2 in (l, r), otherwise l and r violates lemma 1. Consider

the largest among these isolated points and denote it by s∗ ∈ IP2. If there is no point in

IP1∩(s∗, r), then s∗ and r for firm2 violates lemma 1. If there is, then that point (if multiple,

choose any of them) and r for firm1 violates lemma 1.

This completes the proof that both firms randomize on exactly one common interval [α, β].

More over, I prove that firms randomize continuously on [α, β], that is, there is no interior

mass point. Suppose CIi includes a mass point satom 6= 1
2
. This creates a jump in the expected

utility of the other firm j. As a consequence, firm j cannot get her equilibrium payoff on

both side of the mass point, contradicting with the previous property that [α, β] ∈ CIj.

Proof of Lemma 3:

Loosely speaking, the proof is similar to the proof that support cannot consist of only isolated

points in the Step 1 proof of Lemma 2. The trick is that the continuous randomization on

interval [α, β] can be regarded as one equivalent mass point at its conditional expectation.

A more formal proof is the following. I first show that |IPi| ≤ 2, one on each side of [α, β].

After that I will show isolated points on both sides cannot emerge simultaneously for each

player, hence IPi consists at most one point.
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Firstly, each firm has at most one isolated point in its support on each side of [α, β], implying

|IPi| ≤ 2. Suppose otherwise that firm1 has two isolated points s(1)
1 < s

(1)
2 < α. To prevent

violation of lemma 1, there is one and only one isolated point for firm2, s(2), such that

s(2) ∈ (s
(1)
1 , s

(1)
2 ). Since the marginal gain at s(1)

2 is less than at s(1)
1 while the marginal costs

are higher, s(1)
2 cannot be optimal for firm1. This shows that IPi consists of at most two

points, one on each side of [α, β],

They cannot emerge simultaneously on both sides: if so, call those two isolated point s(1)
1

and s(1)
2 . Without loss assume that β < 1

2
. As previously shown, there is no atom at β. To

prevent violation of lemma 1, there is one and only one isolated point between β and s(1)
2 .

This means firm2 chooses location s ≤ s
(1)
2 for sure. s(1)

2 being optimal implies that α0 > s
(1)
2 .

This leads to contradiction because marginal gain at s(1)
2 is greater than that of s(1)

1 while

the marginal costs are lower. This completes the proof that there is at most one isolated

point for each player.

In fact, at most one firm can have non-empty isolated points. This is because when firm i

is active at an isolated point si < α, firm j must have an atom at α, otherwise firm i get

equilibrium payoff at both si and α, contradicting lemma 1. An atom at α in turn implies

that α < 1
2
because firm i is better off at α+ ε compared with α− ε. If firm j is also active

at some other isolated point sj, it’s obvious that sj > β > α. With the same logic, we can

conclude that firm i has an atom at β and therefore β > 1
2
. This contradicts the result in

the second step that 1
2
is not in the support.

Proof of Lemma 4: here I prove the case where ãL and b̃R are both smaller than 1
2
. The

other case can be proved similarly.

First notice that if β < 1
2
, there is no atom at β because this will make β+ strictly better

than β− and contradicts with [α, β] in the support. Similarly, if α > 1
2
, there is no atom at

α.

Next, if player i has an atom at s < α, player j must have an atom at α. This is because
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Lemma 1 implies that player j chooses (s, α] with a positive probability. Moreover, if player

j’s item is not α (say s′ < α), then player j best responds at both s′ and α, while player i

chooses [s′, α] with zero probability, contradicting with Lemma 1. Lastly, it must be one of

the two cases: firm A has an atom at ãL and player B has an atom at α, or firm A has an

atom at β and player B has an atom at b̃R.

Recall that first order condition for firm A on [α, β] is

U ′A(z) = gB(z)(1− 2z) +
1

2
−GB(z)− c′A(z)− pB

ãL <
1
2
implies that U ′A(1

2
+) < 0. This means the interval [α, β] must be to the left of 1

2
,

firm A has an atom at ãL and player B has an atom at α.

β > b̃R because otherwise firm B would deviate from β to b̃R.

D Proof of Proposition 5

First, I prove that there is no MSNE when there is PSNE. When the PSNE is (1
2
, 1

2
), namely

ãL ≥ 1
2
b̃R. As I have shown in the proof of Lemma 4, the firms’ atoms must be in one of

the following two cases: firm A has an atom at ãL and player B has an atom at α, or firm

A has an atom at β and player B has an atom at b̃R. Consider the first case. First order

condition for firm B on [α, β] requires that:

U ′B(z) = gA(z)(1− 2z) +
1

2
−GA(z) + c′B(1− z)− pA

Notice that β > α > 1
2
. Consider z ↑ β. The above formula cannot be zero because

limz↑β GA(z) + pA = 1, while 1
2

+c′B(β) < 1. Therefore there is no MSNE.

Now consider PSNE being (ãL, b̃R). If ãL < 1
2
< b̃R, Lemma 4 leads to contradictions. If firm

A has an atom at ãL, it implies β < 1
2
. But it is impossible to meet the requirement that

βR < β < 1
2
. Similarly, it cannot be the case that firm B has an atom at b̃R. If ãL < b̃R <

1
2
,
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it must be ãL < b̃R < α. Otherwise, consider U ′B(b̃R), it is strictly positive. b̃R < α also leads

to contradiction because UA(ãL, b̃R) ≥ UA(b̃R+, b̃R) > UA(α+, GB), contradicting equation

(4).

Next I show that when there is a MSNE, it is the unique one. Consider the type of MSNE

where firm A has an atom at ãL and firm B has an atom at α. Equilibrium is pinned down

by atom sizes, pA and pB, and the interval [α, β]. By equation (3)∼ (5), each pA corresponds

to at most one (pB, α, β). Now suppose that there are two different MSNE, namely pA and

p′A such that equation (3)∼ (5) holds. Without loss assume pA < p′A. Because firm A chooses

with a higher probability, by equation (5), α′ < α. Since firm A is indifferent between ãL

and α+, this means p′B < pB. By the first order conditions, α′ < α implies that G′A > GA

and G′B > GB. This leads to contradiction because it is not possible for p′A + G′A(β′) = 1

and p′B +G′B(β′) = 1 to hold at the same time.

E Proof of existence of regular MSNE

This section presents a direct proof of existence and uniqueness when costs are quadratic. I

will prove the following statement:

Claim 4. If ãL and b̃R are both smaller than 1
2
and there is no PSNE, equation systems (3) ∼

(5) have a unique admissible solution. Namely, ãL ≤ α < β < 1
2
, b̃R < β and 0 ≤ pA, pB ≤ 1.

If ãL and b̃R are both greater than 1
2
and there is no PSNE, equation systems (3) ∼ (5) have

a unique admissible solution. Namely, 1
2
≤ α < β < b̃R, ãL > α, 0 ≤ pA, pB ≤ 1.

I will illustrate the method with the first case. Within the first case, there are two sub-cases:

either ãL > b̃R or ãL < b̃R and UA(ãL, b̃R) < UA(b̃R+, b̃R). I will illustrate the method with

the first sub-case. All rest cases can be proved similarly.

Following the proposed algorithm, Claim 4 can be translated into the following mathematical

statement:
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Claim 5. Note that ãL = 1
4tA

and b̃R = 1− 1
4tB

When 1− 1
4tB

< 1
4tA

and tA > 1
2
, the following

equation system



√
1− 2a(pA − 1

6
(3 + 4tB(a− 2))) =

√
1− 2b(1− 1

6
(3 + 4tB(b− 2)))

√
1− 2a(pB − 1

6
(3− 4tA(a+ 1))) =

√
1− 2b(1− 1

6
(3− 4tA(b+ 1)))

pB = (1−4atA)2

16(1−2a)tA

pA = 1
2

+2tB(1− a)

(10)

has a unique solution (a, b) such that ãL ≤ a < b < 1
2
, b̃R < β

Proof. Root existence of polynomial equation systems is a widely studied area in computa-

tional algebraic geometry, see Sturmfels (2002).

I prove Claim 5 in two steps: I first show that there exists a unique admissible solution for

some particular parameter (tA, tB). After that I show that the number of real solutions does

not change for all parameters (tA, tB) in the stated area.

The first step is done because example 1 is a special case, with tA = 1 and tB = 1
4
, and there

is unique admissible solution.

To show that number of real roots is always one, I first use the resultant and reduce the

system (10) into a univariate case (with two parameters). 12

Specifically,

G0(a; tA, tB) =tA − 120t2A + 216at2A + 768t3A − 2304at3A

+ . . .

− 1179648a5tAt
6
B + 262144a6tAt

6
B

12In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which
is equal to zero if and only if the polynomials have a common root.
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The key idea of constant number of real roots comes from continuity: as parameters vary

continuously, the solution to the algebraic system varies continuously if treated over the field

of complex numbers. The real solution for the system might disappear only if it collides

with the other solution. The new real solution might appear only when a pair of complex

solutions collide. That means that the necessary condition for bifurcation value for the

parameter under which the system might change the number of its real solutions is that this

value corresponds to the polynomial G0 possessing a multiple root. The condition for the

existence of a multiple root for the univariate polynomial is the vanishing of its discriminant.

To help understanding this argument, let’s look at a familiar quadratic example: x2+bx+c =

0, in which discriminant is ∆ = b2 − 4c. On the complex number fields, number of roots is

constant (two), regardless of parameter b and c. We know that number of real roots decreases

from two to zero as discriminant cross zero from above. The key insight is that as long as

discriminant does not vanish, the number of real root will be constant.

The discriminant of G0(a; tA, tB) is

Da(tA, tB) =− 3112t12
A + 28984t13

A + 353000t14
A +

+ . . .

− 965541888t7At
17
B − 1363673088t8At

17
B − 575668224t9At

17
B

For all (tA, tB) in the interested parameter region, it is negative. Therefore there exists a

unique real solution (a, b) to equation system (10).

Lastly, I show the root obtained satisfies constraints (1) ãL < a < b < 1
2
and (2) b̃R < b. The

main idea is again continuity. I’ll prove the solution satisfy a < b, the other constraints can

be proved similarly.

Note that in the special case solution when tA = 1, tB = 1
4
, the solution of the system

satisfies a < b. If there is some (t′A, t
′
B) such that the solution of the system violates a < b,
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by continuity there must exists some (t∗A, t
∗
B) such that the solution of the system satisfies

a = b. In other words, consider an additional constraint G1(a, b; tA, tB) = a−b, and equation

system (10) have a common root. Repeating the above process, we can show that the system

does not have a common root, namely it’s not possible to have a common root when (tA, tB)

are in the interested area. This proves that solution to (10) always satisfies a < b.

F Nash Equilibrium When the Ideal Design is Disclosed

I start with the most complicated case, namely moderate cost, as illustrated in Figure 5. In

the end, I will define precisely what is low cost, moderate cost and high cost.

Define asymmetry level ∆ = |s∗ − (1 − s∗)| and I focus on s∗ > 1
2
(s∗ < 1

2
can be solved

symmetrically). Moreover, I write equilibrium strategy in terms of effort ei. Namely, for

submissions (sA, sB), eA = sA and eB = 1− sB.

• When ∆ > ∆4 = c−1(1) =
√

1
t
, both firms make no effort in equilibrium. eA = eB = 0

• When ∆ ∈ [∆3,∆4], where ∆3 = 2c−1(1) − 1 = 2
√

1
t
− 1, firm B has a head start of

size ∆ and the bid cap is not hit. In this case,

GA(e; s∗) =


wB if e < ∆,

wB + c(e−∆) if ∆ ≤ e < c−1(1),

1 if c−1(1) ≤ 1,

and

GB(e; s∗) =


c(e+ ∆) if e < c−1(1)−∆,

1 otherwise,

, where wB = 1− c(c−1(1)−∆) is firm B’s equilibrium payoff.
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• When ∆ ∈ [∆2,∆3], this is the case generalized from Che and Gale (1998), where

∆2 = 1 −
√

2(t− 1)/t solves b̄ = ∆, where b̄ is the upper bound of randomizing

interval and defined below. In this case, firm A have atoms ∆ and s∗, and firm B have

atoms at 0 and s∗ −∆:

GA(e; s∗) =



0 if e < ∆,

wB + c(e−∆) if ∆ ≤ e < b̄,

wB + c(b̄−∆) if b̄ ≤ e < s∗

1 otherwise,

and

GB(e; s∗) =


c(e+ ∆) if e < b̄−∆,

c(b̄) if b̄−∆ ≤ e < s∗ −∆

1 otherwise,

, where b̄ = c−1(2c(s∗)− 1) and wB = 1− 2c(s∗ −∆) + c(b̄−∆).

• When ∆ < ∆1 = 2c−1(1
2
) − 1 =

√
2
t
− 1, both firms choose exactly s∗: eA = s∗,

eB = 1− s∗.

• When ∆ ∈ [∆1,∆2], each firm randomizes between two points:

P(eA = s∗) = 2c(s∗ −∆) = 1− P(eA = 0)

and

P(eB = 1− s∗) = 2(1− c(s∗)) = 1− P(eB = 0)

Lastly, I will use the four thresholds above to define what are high cost, moderate cost and

low cost.
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• t < 1
2
: costs are low enough so that ∆1 > 1. In this case, no matter where s∗ is, players

always move to exactly s∗.

• 1
2
≤ t < 1: costs are low, namely ∆2 > 1 > ∆1. In this case, both firms either choose

s∗ with probability one or randomize between their initial locations and s∗.

• 1 ≤ t < 2: most complicated case, namely moderate costs so that ∆4 < 1 and ∆2 > 0.

In this case, all five possible cases in Figure 5 are possible.

• 2 ≤ t < 4: costs are high so that ∆2 < 0. In this case, firms never randomize between

two points or choose s∗ with probability one.

• t > 4: costs are so high that ∆3 < 0 and bid cap is never hit for the weaker firm.

G Proof of Proposition 6

When t < 1
2
, the maximum possible cost of adjustment is t ∗ 12 < 1

2
. Therefore, wherever

s∗ is revealed to be, both firms have incentives to submit exactly s∗ as their design. As a

result, the contest organizer always gets the first best result.

On the other extreme, for high cost t > 4, revelation of s∗ leads to one of the following

two scenarios: if s∗ is far away from the median, no firm puts any effort because it is too

costly for the weaker firm to catch up; if s∗ is close to 1
2
, it is a case of contests with head

start (high cost guarantees no bid cap in effect). Expected utility of the contest organizer

is UD = 23
72t
− 1

60
√
t
− 1

4
. On the other hand, the expected utility of the contest organizer

if she conceals is UC = −1−2t+2t2

8t2
. Their difference, UD − UC = −6t3/2+25t+45

360t2
converges to

zero from below as t → ∞. In other words, the contest organizer is better off concealing

information about s∗ when costs are high.

For 1
2
< t < 4, it can be shown that UD − UC > 0.
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H Instructions in the CH Treatment13

Instructions

Overview

You are about to participate in an experiment in decision making. Your decisions will

determine your earnings. Please read these instructions carefully.

Do not use mobile phones, laptop computers, or use the lab computer for other purposes.

During the experiment, please refrain from talking or looking at the computer monitors of

others. If you have questions anytime, please raise your hand and we will address it as soon

as possible. In the experiment, you will earn points. After the experiment, we will convert

your points and pay you the Chinese Yuan at the rate of 100 points=10 Chinese Yuan.

Today’s experiment consists of two parts, followed by a questionnaire. Your decisions made

in each part only affect your earnings in that part.

Part 1 Instructions

Part 1 of the experiment consists of 40 decision rounds. Before the first round, you will be

randomly and anonymously grouped with another player in the room. You will play with

this player for all 40 rounds in this part of the experiment. In each decision round, both

you and the other paired player act as a shop owner and choose new locations of your shops.

At the outset, the two shops are at the endpoints of a 100-meter-long street. Each of you

has 150 points for the use of moving the shop to a new location on the street. For the same

moving distance, the moving cost is the same for both of you. Moreover, the moving cost

increases in the moving distance, and at a higher rate as distance increases. Specifically, the

moving cost equals 8% of the square of the moving distance. For instance, if you choose to

move your new shop 30 meters away from your old shop, the cost is 8%*30*30 = 72 points.

In the experiment, as shown in Figure 1, you can move your mouse to check the moving
13These are translated from the Chinese version used in the experiment. Instructions in Chinese are

available upon request.
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cost for each location on the street. Once you decided your most preferred location, you can

confirm your choice by clicking the mouse.

The new locations chosen by you and the other player will determine the relative attractive-

ness of two shops for a consumer. To be specific, a consumer (“she”) arrives at a random

location on the street and picks the shop that is closer to her. She will bring a profit of 100

points to the shop owner. In the case of a tie, the 100 points will be equally split between

two players. Before choosing the new locations, you and the other player would

know the location of the consumer. Please note that even if the consumer ends

up going to the other shop, your moving cost will nevertheless be deducted from

your balance. When you choose the moving location, you can also check your earnings for

each possible scenario on the screen. See Figure 1.

Your earnings for each round equal to the starting balance minus your moving cost and then

plus your share of profits from the consumer. If your shop is strictly closer to the consumer
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than the other shop is, you will have a profit of 100 points. If two shops are equally close to

the consumer, you will have a profit of 50 points. Alternatively, if your shop is further away

to the consumer compared to the other shop, you will have 0 points. For instance, suppose

at the beginning of the round, your old shop locates at 0 and the other player’s shop locates

at 100. You then spend 19.2 points in moving your shop to the location 15.5 and the other

shop moves to the location 71.5. Suppose the consumer arrives at the location 90.4, which

is closer to the shop owned by the other player than to your shop. Your earnings in this

round are 150-19.2=130.8 points. Your net profit is your earnings minus your start balance,

which is 130.8 – 150 = -19.2 in the above example. In the experiment, you can check both

earnings and net profits on the result page or in the history table.

After you and the other player make the location choices, the screen will show the results

of the current round. You can check the new locations of two shops and the earnings.

After confirming the earnings, you will proceed to the next decision round. Each round

is independent of other rounds. In a new round, you and your paired player will have a

refreshing start balance of 150 points. A new consumer will arrive and bring a profit of 100

points. The consumer’s location is known before choosing locations for the new shops.

At the end of this part of the experiment, 2 of the 40 rounds will be randomly selected for

payment. Each round is equally likely to be chosen. Your earnings in the selected rounds

will be counted to your final payment.

Part 2 Instructions In part 2, you will make 10 decisions. In each decision, you will choose

between Option A and Option B. Each of these two options has a probability to generate

either high earnings or low earnings. In all 10 decisions, high and low earnings in Option

A are fixed at 40 points and 32 points, and high and low earnings in Option B are fixed

at 77 points and 2 points. In each decision, Options A and B have the same probability to

generate high earnings. For example, in the first decision, both options have 10% chance to

generate high earnings.
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You could click Option A or Option B buttons in blue to make your choices. After you finish

all 10 choices, one of them will be randomly selected for payment. Computer will generate a

random number, which determines whether your earnings are high or low (with the specified

probability) Each decision is equally likely to be chosen. For example, the graph below

shows a chosen round for payment. Because you have chosen Option B, and the random

number determines that you will earn a high earnings, therefore your earnings in this part

is 77 points.
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