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Abstract: I analyze the optimal favoritism in a complete-information all-pay contest with

two players, whose costs of effort are weakly convex. The contest designer could favor or

harm some contestants using one of two instruments: head starts and handicaps. I find

that any given player’s effort distribution is ranked in the sense of first-order stochastic

dominance according to how (ex post) symmetric the players are in terms of competitiveness.

Consequently, as long as the designer values effort from both contestants, “leveling the

playing field” is optimal regardless of which instrument is used.

Keywords: All-Pay Contests, Stochastic Dominance, Favoritism, Head Start, Handicap.

1 Introduction

Contests are widely used to allocate scarce resources among competing individuals. Examples

include lobbying, college admissions, and competitions for job promotion opportunities (see

∗Email address: zf@nankai.edu.cn. I am indebted to Ron Siegel for his continuous guidance and many
helpful discussions. I thank two anonymous reviewers for their constructive and insightful comments. All
errors are my own.
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Konrad [2009], Dechenaux et al. [2015], and Vojnović [2016]). In many situations, contestants

are ex ante asymmetric in their abilities and positions. For instance, when considering a

job promotion competition, the manager may notice differences in productivity levels and

progress among employees. Therefore, she may want to tailor the competition to encourage

more effort from employees.

Problems like this are commonplace: the contest organizer often has discretionary power

in designing contest rules and takes advantage of them to induce more competition. Two

general approaches are considered in the literature. One approach is to set individual-specific

prizes, as in Gürtler and Kräkel [2010] and Pérez-Castrillo and Wettstein [2016], where the

contest reward depends on the identity of the winner. Another approach is to set individual-

specific contest success functions; in this case, when facing the same bidding profile, the two

players have different probabilities of winning (see Drugov and Ryvkin [2017] and Fu and

Wu [2020] for a general analysis).

This paper adopts the second approach and investigates the design of individual-specific

contest success functions. Two commonly used instruments are considered: head starts,

which are added to players’ efforts, and handicaps, which discount players’ efforts. In recent

years, there has been growing literature exploring similar questions in various contest for-

mats (see Konrad [2002], Epstein et al. [2011], Li and Yu [2012], Kirkegaard [2012], Franke

et al. [2013], Seel and Wasser [2014], Kawamura and de Barreda [2014], and Franke et al.

[2018]). The conventional wisdom suggests that it is optimal to “level the playing field”: the

contest designer prefers an unbiased contest when contestants are symmetric, but a biased

contest favoring the weaker contestant when they are asymmetric. Nevertheless, in most

of the aforementioned literature (with the exception of Kawamura and de Barreda [2014]

and Drugov and Ryvkin [2017]), while costs are assumed to be linear with respect to effort,

this assumption is not necessarily satisfied in many practical settings. For example, in a job

promotion competition, much more effort is usually required to improve the work quality
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from excellent to perfect than from mediocre to good for any given employee.

From a theoretical perspective, this linearity assumption may cause us to overlook infor-

mation that we should not have. Previous studies find the curvature of cost functions to

be a decisive factor that cannot be ignored in contest design problems (see Moldovanu and

Sela [2001], Drugov and Ryvkin [2017], Olszewski and Siegel [2020] and Fang et al. [2020]):

Moldovanu and Sela [2001] find that it is optimal to allocate the entire prize to a single winner

when cost functions are linear or concave; however, several positive prizes may be optimal

when cost functions are instead convex. Similarly, Olszewski and Siegel [2020] find that the

optimal number of prizes depends on the curvature of the costs in performance-maximizing

large contests.

In light of this deficiency, the current paper investigates the optimal design of biased contests

when cost functions are weakly convex. A related work is Drugov and Ryvkin [2017], which

introduces a general class of biased contest success functions and studies optimal bias when

players are ex ante symmetric. Drugov and Ryvkin [2017] provide conditions under which

zero bias is optimal and prove through examples that biased contests may be optimal when

such conditions fail. The key assumption in their model is that contest success functions

are smooth: this includes Tullock [1980] lottery contests and Lazear and Rosen [1981] type

tournaments. Nevertheless, one large class of contests is excluded by this assumption — that

is, all-pay auctions, or more generally, all-pay contests.

In this paper, I use the framework in Siegel [2014a] and focus on the design of the optimal

biased all-pay contest with complete information. A contest designer could influence the

outcome of the contest by giving head starts to or handicapping players, whose costs of

effort are weakly convex. For simplicity, I omit the word “weakly” hereafter: all relations

are in the weak sense, unless explicitly stated as “strictly.” I find that, regardless of which

instrument is used, any given player’s effort distribution is ranked in the sense of first-order
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stochastic dominance according to how (ex post) symmetric the two players are in terms of

competitiveness. Consequently, for any objective functions increasing in efforts, it is optimal

for the organizer to “level the playing field.” Comparing head starts and handicaps, I show

that no instrument always dominates over the other, and I provide sufficient conditions for

head starts to be more efficient, under the two most-studied objectives: total effort and

maximum individual effort. Lastly, I study optimal combinations of the two instruments

under the aforementioned two objectives and find that the designer benefits from using both

instruments simultaneously; in fact, by doing so, she achieves her first best result when her

objective is maximum individual effort.

This paper’s contributions are threefold. First, by allowing for convex cost functions, my

result generalizes the conventional wisdom that a contest designer benefits from “leveling

the playing field” and that (under certain conditions) head starts are a more efficient tool

than handicaps. In this regard, a closely-related work is Li and Yu [2012], who find that,

in revenue-maximizing all-pay auctions, “leveling the playing field” is optimal and that

handicaps are less efficient than head starts. The current paper provides boundaries for

their results to hold in more general cases: it may be suboptimal to “level the playing field”

when cost functions are not convex, and sometimes handicaps can, in fact, be more efficient

than head starts when cost functions are strictly convex.

Second, one conceptual element that sets this paper apart from the rest of the literature is

that the current paper examines the distribution of efforts rather than a summary statistics,

such as total effort. Consequently, I am able to show a stronger result: any player’s effort

distribution is ranked in the sense of first-order stochastic dominance, according to how (ex

post) symmetric the two players are in their competitiveness.

Finally, some results in this paper also contribute to the contest literature by deepening our

understanding of optimal favoritism in contests with non-smooth contest success functions
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under complete information. For example, one implication of my result is that in a symmetric

all-pay auction with complete information, the optimal head start is of size zero. This

contrasts with the findings in Seel and Wasser [2014] that, with incomplete information, the

optimal head start is always of a strictly positive size. This discrepancy emphasizes the

role that information plays in the design of all-pay contests and is consistent with findings

on the design of the optimal handicaps in lottery contests (see Fu [2006] and Kirkegaard

[2012] for analyses in complete and incomplete information settings respectively). Also, my

model yields contrasting results to contest models with smooth contest success functions.

For instance, Drugov and Ryvkin [2017] show that a head start can improve aggregate effort

supply in two-player Tullock contests with two symmetric players. As Section 3.1 shows

in the current paper, though, this result fails to hold when contest success functions are

non-smooth.

The remainder of the paper is organized as follows. Section 2 sets up the model. Sections

3.1-3.3 identify the optimal head start and handicap and make a comparison between them.

Section 3.4 discusses what happens when cost functions are not convex. Section 4 investigates

the optimal combination of both instruments in two special cases, and Section 5 concludes.

Omitted proofs are in the Appendix.

2 Model

There are two risk-neutral players and one contest designer.1 The players, indexed by i = 1, 2,

compete for a single prize by exerting efforts ei ≥ 0. Each player is characterized by her

valuation of the prize, Vi > 0, and a cost function (of effort) ci : R+ → R+.

The contest designer is characterized by a utility function Λ(e1, e2), and she can influence

1Fu and Wu [2020] show that in generalized lottery contests, “leveling the playing field” is optimal when
there are two contestants, but not so when the number of contestants exceeds two.
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the outcome of the contest with two instruments: head starts ai ≥ 0 and handicaps hi > 0.

Specifically, when player i exerts effort ei, her score is si = ai + hiei. Denote by c̃i(si) player

i’s cost of achieving score si in the presence of head start ai and handicap hi. We have:

c̃i(si) =


0, if si ≤ ai,

ci(
si−ai
hi

), otherwise.

Given s = (s1, s2), player i’s payoff is

ui(s) = Pi(s)Vi − c̃i(si),

where Pi : R2
+ → [0, 1] is player i’s probability of winning, which satisfies

Pi(s) =


0, if si < s−i,

any value in [0, 1], if si = s−i,

1, if si > s−i,

such that
∑2

i=1 Pi(s) = 1.

I make the following assumptions.

Assumption 1. ci(0) = 0. ci is strictly increasing, differentiable, and weakly convex.

Assumption 2. Λ(e1, e2) is increasing in both arguments.

I normalize Vi = 1 for both players. This is without loss of generality. Extended from Siegel

[2009], the equilibrium characterization uses the following definitions.

Definitions:
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1. Player i’s reach ri is the maximum effort she can choose without obtaining a negative

payoff if she wins the prize with certainty: ri = c−1i (1).2 Re-index players such that

r1 ≥ r2.

2. Player i’s modified reach r̃i is the maximum score she can obtain without incurring a

negative payoff if she wins the prize with certainty, in the presence of handicaps and

head starts: r̃i = c̃−1i (1).

3. The player with a lower modified reach is the marginal player.

4. The threshold T of the contest is the modified reach of the marginal player: T =

min{r̃1, r̃2}.

5. Player i’s power wi is her payoff when her score is T and wins: wi = 1− c̃i(T ).3

The main departure from Siegel [2009] is the introduction here of favoritism in the contests

and, as a result, modified reaches. According to Siegel [2009], in any equilibrium, the ex-

pected payoff of every player is equal to the maximum of her power and zero. In my setting,

ri determines player i’s ex ante strength: without head starts or handicaps, the player with a

higher reach obtains a positive equilibrium payoff and the player with a lower reach obtains

an equilibrium payoff of zero. By contrast, in the presence of head starts and handicaps,

r̃i = ai +hiri determines player i’s ex post strength: the player with a higher modified reach

obtains a positive equilibrium payoff, and the player with a lower modified reach obtains an

equilibrium payoff of zero.

The difference between the two players’ reaches, r1 − r2, measures ex ante how symmetric

the two players are, and its counterpart, r̃1 − r̃2, measures ex post how symmetric the two

players are, after the choice of head starts or handicaps (by the contest designer). In line

2Existence of ri is implied by Assumption 1.
3I assume that T − ai ≥ 0. If this assumption is violated, the contest is so biased that neither player has

an incentive to compete in equilibrium, which is a trivial case.
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with existing literature, I say that a designer levels the playing field if players are ex post

symmetric, namely r̃1 − r̃2 = 0.

With two players, the model can be simplified because only the relative sizes of the two

players’ head starts and handicaps matter. It is without loss of generality to normalize

Player 1’s head start a1 to zero and handicap h1 to one and to focus on instruments placed

on Player 2. Namely, players’ efforts are mapped to scores as: s1 = e1 and s2 = a + he2,

where a ∈ R and h ∈ R+. a > 0 means that Player 2 is given a head start, and a < 0 means

that Player 1 is given a head start.4 Likewise, h < 1 means that Player 2 is handicapped,

and h > 1 means that Player 1 is handicapped.

Lastly, for tractability, most of the following analysis is focused on the optimal use of a single

instrument with the exception of Section 4, which explores the optimal combination of two

instruments when the contest designer’s objective is maximum individual effort.

3 Optimal Favoritism with a Single Instrument

3.1 Optimal Head Start

When the contest designer only uses head starts as an instrument, namely h = 1, the size of

head starts falls into one of the three cases:

Case 1: a ≤ 0. A head start is given to the ex ante stronger player and makes her even

stronger. By definition, T = r2, w1 = 1− c1(T + a) and w2 = 0.

Case 2: r1 − r2 < a. A large head start is given to the ex ante weaker player such that ex

4This negative a is different from a nagative head start (−β) given to Player 2 in Drugov and Ryvkin
[2017]. In my model, only the difference in the two player’s head starts matters. Consequently, all results
remain if a negative head start for each individual is allowed (ai ∈ R).
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post she becomes the stronger player. By definition, T = r1, w1 = 0 and w2 = 1− c2(T − a).

Case 3: 0 < a ≤ r1 − r2. A small head start is given to the ex ante weaker player such that

ex post she is still the weaker player. By definition, T = r2 + a, w1 = 1− c1(T ) and w2 = 0.

Below I first solve for the unique equilibrium and then show the first-order stochastic domi-

nance (FOSD hereafter) property of players’ effort distributions. I will illustrate the method-

ology in detail with Case 1 in which a head start is given to Player 1, and present its result

in Proposition 1. Proposition 2 is the parallel result when a head start is given to Player 2,

which corresponds to Cases 2 and 3.

Following Siegel [2014a], the unique equilibrium is in mixed strategies. Moreover, in any

equilibrium, the expected payoff of every player is equal to the maximum of her power

and zero.5 Let GHS
i (e; a) denote the CDF of player i’s equilibrium strategy, which specifies

player i’s probability of choosing efforts less than or equal to e, when the size of the head

start is a. For simplicity, I call it player i’s effort distribution induced by a. Recall that

w1 = 1 − c1(T + a) and w2 = 0, which are players’ equilibrium payoffs. According to the

algorithm proposed in Siegel [2014a], this payoff characterization pins down GHS
i (e; a) for

a ≤ 0:

GHS
1 (e; a) =


c2(e− a), if e ∈ [0, T + a),

1, if e ∈ [T + a,∞),

(1)

GHS
2 (e; a) =


w1, if e ∈ [0,−a),

c1(e+ a) + w1, if e ∈ [−a, T ),

1, if e ∈ [T,∞).

(2)

5When a = r1 − r2, the Power Condition (Assumptions C3(i) and M3(i)) in Siegel [2014a] is not met.
Siegel [2014b] has shown that in contests with two players, the payoff result holds even if the Power Condition
fails. Notice also that the algorithm and its uniquness does not rely on the power condition directly.
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Proposition 1. When a′ < a ≤ 0, GHS
i (·; a) FOSD GHS

i (·; a′), i.e. GHS
i (e; a) ≤ GHS

i (e; a′)

for i = 1, 2 and e ≥ 0. In particular, for all i = 1, 2 and a ≤ 0, GHS
i (·; 0) FOSD GHS

i (·; a).

Proof.

∂GHS
1 (e; a)

∂a
=


−c′2(e− a) < 0 if e ∈ [0, T + a),

0 if e ∈ [T + a,∞),

∂GHS
2 (e; a)

∂a
=


−c′1(T + a) < 0 if e ∈ [0,−a),

c′1(e+ a)− c′1(T + a) ≤ 0 if e ∈ [−a, T ),

0 if e ∈ [T,∞).

This shows that GHS
i (·; a) FOSD GHS

i (·; a′) in the interior of each interval.

FOSD of GHS
i holds on the “boundaries” as well. Consider a change in the size of the head

start from a to a−δ for small δ > 0. When e ∈ [T +a−δ, T +a], GHS
1 (e; a) and GHS

1 (e; a−δ)

are on different segments in (1). Since GHS
1 (e; a) = c2(e− a) ≤ 1 = GHS

1 (e; a− δ), FOSD of

GHS
1 (·) holds on the boundary.

Likewise, GHS
2 (e; a) and GHS

2 (e; a−δ) are on different segments in (2) when e ∈ [−a,−a+δ].

It is less straightforward to prove GHS
2 (e; a) ≤ GHS

2 (e; a − δ). Recall that GHS
2 (e; a) =

c1(e + a) + 1 − c1(T + a) and GHS
2 (e; a − δ) = w1 = 1 − c1(T + a − δ). Notice that

GHS
2 (e; a− δ) is constant on e ∈ [−a,−a+ δ] and that GHS

2 (e; a) is increasing in e, it suffices

to prove the inequality at e = −a+ δ. Let Γ(δ) denote the difference between GHS
2 (e; a) and

GHS
2 (e; a− δ) at e = −a+ δ. That is,

Γ(δ) = GHS
2 (−a+ δ; a)−GHS

2 (−a+ δ; a− δ)

= c1(δ)− c1(T + a) + c1(T + a− δ).
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Γ(δ) ≤ 0 for all small δ because Γ(0) = 0 and Γ′(δ) = c′1(δ)− c′1(T + a− δ) ≤ 0. Therefore,

FOSD of GHS
2 (·) holds on the boundary. This completes the proof.

In the proof, we see that as the size of head start given to Player 1 decreases, both players

adopt more aggressive strategies in equilibrium in the sense of first-order stochastic domi-

nance. There is, however, a subtle difference. Player 1 becomes more aggressive as long as c2

is increasing. The main reason is that Player 2 obtains a constant equilibrium payoff of zero.

A smaller head start given to Player 1 together with an increasing c2 implies that Player 2

now competes with Player 1 at a lower cost. To keep Player 2’s payoff constant, Player 1

becomes more aggressive.

The analogous property of Player 2’s strategy, however, requires more assumptions on c1.

This is because Player 1’s equilibrium payoff w1 decreases as a result of a smaller head start.

On one hand, this decrease implies that Player 2 now competes more aggressively. On the

other hand, similar to the previous analysis, a smaller head start given to Player 1 together

with an increasing c1 implies that Player 1 will now compete with Player 2 at a higher

cost. Thus, Player 2 becomes less aggressive. The sign of the overall effect, captured by

c′1(e+ a)− c′1(T + a), is determined by the curvature of c1.

Combining the analyses above, Proposition 1 concludes that the contest designer would be

worse off if she gives a strictly positive head start to the ex ante stronger player. As the

following proposition suggests, this idea of “leveling the playing field” also applies when the

designer gives a head start to the ex ante weaker player.

Proposition 2. When a′ > a ≥ r1 − r2, GHS
i (·; a) FOSD GHS

i (·; a′). When r1 − r2 ≥ a′ >

a ≥ 0, GHS
i (·; a′) FOSD GHS

i (·; a). Therefore, GHS
i (·; r1 − r2) FOSD GHS

i (·; a) for i = 1, 2

and a ≥ 0.

Lemma 1 combines Propositions 1 and 2 and shows that the equilibrium effort distributions
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induced by r1 − r2 dominate over those induced by any other head starts.

Lemma 1. GHS
i (·; r1 − r2) FOSD GHS

i (·; a) for any a ∈ R+.

Proof. When a ≤ 0, according to Proposition 1, GHS
i (·; a) is dominated by GHS

i (·; 0), which

by Proposition 2 is dominated by GHS
i (·; r1 − r2). Proposition 2 shows that GHS

i (·; r1 − r2)

FOSD GHS
i (·; a) when a > 0. This completes the proof.

Because GHS
1 (·; a) and GHS

2 (·; a) are independent, FOSD properties in Lemma 1 imply that

the optimal head start is r1 − r2. Theorem 1 is the main result in this section.

Theorem 1. The optimal head start, denoted by a∗, is r1 − r2.

Proof. To show that a∗ = r1 − r2 is optimal, consider any head start a. By Lemma 1,

GHS
i (e; a∗) ≤ GHS

i (e; a). Let vi(e) = inf{y : GHS
i (y; a∗) ≥ GHS

i (e; a)}. Then,

∫∫
Λ(e1, e2)dG

HS
1 (e1; a

∗)dGHS
2 (e2; a

∗) ≥
∫∫

Λ(v1(e1), v2(e2))dG
HS
1 (e1; a)dGHS

2 (e2; a)

≥
∫∫

Λ(e1, e2)dG
HS
1 (e1; a)dGHS

2 (e2; a),

where the first inequality is by substitution and the definition of vi(e) and the second in-

equalities is by the fact that Λ(e1, e2) is increasing and that vi(ei) ≥ ei, which is true because

GHS
i (e; a∗) ≤ GHS

i (e; a).

Theorem 1 shows that giving a head start of size r1 − r2 to Player 2, namely “leveling

the playing field”, maximizes the expectation of any increasing utility functions, in which

Λ(e1, e2) = e1+e2 and Λ(e1, e2) = max{e1, e2} are included as special cases. As an implication

of Theorem 1, Corollaries 1 and 2 consider these two utility functions and characterize

optimal head starts in an ex ante asymmetric contest and in an ex ante symmetric contest,

respectively.
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Corollary 1. In an ex ante asymmetric contest, providing a head start of size r1 − r2 to

Player 2 maximizes both expected total effort and the expected maximum individual effort.

Corollary 2. In an ex ante symmetric contest, zero head start maximizes both the expected

total effort and the expected maximum individual effort.

3.2 Optimal Handicap

When the contest designer only uses handicaps as an instrument, namely a = 0, the size of

the handicap falls into one of the three cases:

Case 1: h ≤ 1. The ex ante weaker player is handicapped and hence becomes even weaker.

By definition, T = r2h, w1 = 1− c1(T ) and w2 = 0.

Case 2: r1
r2
< h. The ex ante stronger player is handicapped such that she becomes the ex

post weaker player. By definition, T = r1
h

, w1 = 0 and w2 = 1− c2(T ).

Case 3: 1 < h ≤ r1
r2

. Although the ex ante stronger player is handicapped, she is still ex post

stronger than her opponent. By definition, T = r2, w1 = 1− c1(hT ) and w2 = 0.

LetGHC
i (e;h) denote the CDF of player i’s equilibrium strategy when the size of the handicap

is h. The analysis of the optimal handicap is similar to that of the optimal head start. Hence

I list below the corresponding propositions and the main result, while leaving details in the

Appendix.

Proposition 3. When h′ > h ≥ r1
r2

, GHC
i (·;h) FOSD GHC

i (·;h′) . When r1
r2
> h′ > h ≥ 1,

GHC
i (·;h′) FOSD GHC

i (·;h). Therefore, GHC
i (·; r1

r2
) FOSD GHC

i (·;h) for i = 1, 2 and h ≥ 1.

Proposition 4. When h′ < h ≤ 1, GHC
i (·;h) FOSD Gi(·;h′). In particular, for i = 1, 2 and

h ≤ 1, GHC
i (·; 1) FOSD GHC

i (·;h).
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Lemma 2. GHC
i (·; r1

r2
) FOSD GHC

i (·;h) for any h > 0.

Theorem 2. The optimal handicap, denoted by h∗, is r1
r2

.

Corollary 3. In an ex ante asymmetric contest, handicapping Player 1 by the size of r2
r1

maximizes both expected total effort and the expected maximum individual effort.

Corollary 4. In an ex ante symmetric contest, zero handicapping maximizes both the ex-

pected total effort and the expected maximum individual effort.

Remarks: all results in this section holds when ec′i(e) is increasing in e, which is implied

by convexity of ci. More discussion about this can be found in Section 3.4.

3.3 Comparison between Instruments

If the contest organizer could choose between the two instruments, which one would she

choose? Proposition 5 shows that in general there is no definite answer: Player 1 exerts

more efforts when head starts are used instead of handicaps; however, Player 2 exerts less

efforts in this case.

Proposition 5. GHS
1 (·; a∗) FOSD GHC

1 (·;h∗), but GHC
2 (·;h∗) FOSD GHS

2 (·; a∗).

Proposition 5 implies that a contest designer who values both players’ efforts does not always

prefer one instrument to the other. This is illustrated with Examples 1 and 2 below with

two widely used objective functions: Λ(e1, e2) = e1 + e2 and Λ(e1, e2) = max{e1, e2}.

Example 1. Suppose that Λ(e1, e2) = e1 + e2.

When c1(e) = 1
2
e2 and c2(e) = e2, reaches are r1 =

√
2 and r2 = 1. Optimal instruments are

a∗ =
√

2− 1 and h∗ =
√

2. The expected total effort induced by the optimal head start and
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the optimal handicap are
√

2 + 1√
2
− 1

2
≈ 1.6213 and 2

3
+ 2

3
√
2
≈ 1.6095 , respectively. The

contest organizer therefore prefers “leveling the playing field” with head starts.

When c1(e) = 1
2
e2 and c2(e) = e3, reaches and optimal instruments stay unchanged. The

expected total effort induced by the optimal head start and the optimal handicap are now
√

2 + 1√
2
− 5

12
≈ 1.7047 and 2

3
+ 3

2
√
2
≈ 1.7273, respectively. The contest organizer therefore

prefers “leveling the playing field” with handicaps. �

Example 2. Suppose that Λ(e1, e2) = max{e1, e2}.

When c1(e) = e and c2(e) = 9
8
e, reaches are r1 = 1 and r2 = 8

9
. Optimal instruments are

a∗ = 1
9

and h∗ = 9
8
. The expected maximum individual effort induced by the optimal head

start and the optimal handicap are 2503
3888
≈ 0.6438 and 307

486
≈ 0.6317, respectively. The contest

organizer therefore prefers “leveling the playing field” with head starts.

When c1(e) = e3 and c2(e) = 9
8
e, reaches and optimal instruments stay unchanged. The

expected maximum individual effort induced by the optimal head start and the optimal

handicap are now 24056
32805

≈ 0.7333 and 199
270
≈ 0.7370, respectively. The contest organizer

therefore prefers “leveling the playing field” with handicaps. �

Despite the lack of a general ranking result, Propositions 6 and 7 below provide sufficient

conditions under which head starts are preferred.

Proposition 6. If c1(e) ≤ c2(
e
h∗ ) for all e ∈ [0, r1], then the contest with the optimal head

start induces higher expected total effort than that with the optimal handicap.

Proposition 7. If there is a function φ(·) : [0, r1r2] → R+ and m ≥ 0 such that for all

e1 ∈ [0, r1] and e2 ∈ [0, r2], c1(e1)c2(e2) = φ(e1e2)e
m
2 , then the contest with the optimal head

start induces higher expected maximum individual effort than that with the optimal handicap.

Proposition 6 suggests that when c1 is lower than c2 even if the handicap is counted in, the
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optimal head start induce higher expected total effort than the handicap does. With a much

lower cost, Player 1’s effort is of higher magnitude compared with Player 2’s. Recall that

when head starts are used instead of handicaps, Player 1’s expected effort gets higher, but

Player 2’s expected effort gets lower. The increase in Player 1’s expected effort, therefore,

dominates the decrease in Player 2’s, leading to an increase in total effort. The condition

in Proposition 6 is quite general. For example, it is satisfied when c1 is a scale down of c2,

namely c1(e) = τ0c2(e) for some τ0 < 1. This includes linear cost functions like the ones in

Li and Yu [2012], as special cases.

Proposition 7 suggests that when c2 is of higher degrees than c1, the optimal head start is

more efficient when the organizer’s objective is maximum individual effort. The main reason

is that the distribution of an order statistic is the multiplication of two players’ equilibrium

strategies. A sufficient condition for head starts to be more efficient is c1(e+ a∗)c2(e− a∗) ≤

c1(eh
∗
1)c2(

e
h∗
1
), which holds when the condition in Proposition 7 is met. This condition is also

quite general. For example, it is satisfied by monomial cost functions with Deg(c1) ≤ Deg(c2).

This includes linear cost functions, which are widely studied in the literature, as special cases.

3.4 Non-Convex Cost Functions

What would happen if cost functions are not convex? Example 3 shows that, in this case,

“leveling the playing field” with head starts may not be optimal.

Example 3. In a contest with two ex ante symmetric players with costs ci(e) = 3
√
e. Reaches

for players are both 1. Consider giving Player 2 a head start of size a ∈ [0, 1). In equi-

librium, expected efforts of players 1 and 2 are W01(a) =
3√1−a
4

(3a + 1) and W02(a) =

1
4

(
3a4/3 − 4a+ 1

)
and respectively. Figure 1 depicts both individual efforts and total effort.

Expected total effort W0(a) attains its maximum at a∗ ≈ 0.5688.
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Let W1(a) denote the expected maximum individual effort. W1(a) = 1
4
(−3( 3

√
1− a −1)a4/3+

(7 3
√

1− a− 4)a+ 1) is maximized at a∗ ≈ 0.6546, as in Figure 2.

Both maximizers for expected total effort and the expected maximum individual effort are

strictly positive when two players are ex ante symmetric. Hence “leveling the playing field”

is not optimal in this setting. �

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Expected Effort

Figure 1: Total effort with different head starts
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Figure 2: Maximum individual effort with different
head starts

Example 4, in a similar vein, shows that “leveling the playing field” with handicaps may not

be optimal when cost functions are not convex. It is, however, more challenging to construct

such examples because a sufficient condition for Theorem 2 to hold is that ec′i(e) increases

in e, which is weaker than the convexity of ci.

Example 4. Consider a contest with two ex ante symmetric players with costs ci(e) =

1
2.3

log(log(50e + e0)), where e0, the Euler’s number, normalizes ci(0) to zero. Reaches for

players are both approximately 429.2471. Consider headicapping Player 2 by a factor of

h ∈ (0, 1].

Let W0(h), W01(h) and W02(h) denote the expected total effort and individual expected

effort. As Figure 3 shows, when h is very close to zero, which means Player 2 is extremely

disadvantaged, Player 2 puts a lot of effort to stay competitive, leading to a higher expected

total effort than that in the unbiased case (h = 1). For example, h = 0.001 induces the
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expected total effort of 54.0429, which is higher than 42.2403 induced by h = 1.

Figure 4 shows that the expected maximum individual effort, denoted by W1(h), exhibits

a similar pattern: h = 0.001 induces the expected maximum individual effort of 54.0322,

which is higher than 39.7861 induced by h = 1.

Therefore, “leveling the playing field” is not optimal in this setting. �
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Figure 3: Total effort with different handicaps
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Figure 4: Maximizing individual effort with differ-
ent handicaps

4 Optimal Favoritism with Both Instruments

One natural question to ask is: what happens if the organizer can use both instruments

simultaneously? Similar questions have been studied in Kirkegaard [2012] and Franke et al.

[2018]. They find that in revenue-maximizing all-pay auctions, it is generally optimal to

combine the two instruments.

A general analysis of optimal combinations of the two instruments in all-pay contests with

general objective functions is beyond the scope of this paper. In what follows, I concentrate

on two most-studied objective functions, total effort and maximum individual effort, and

demonstrate that the contest designer could benefit from using both instruments simultane-
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ously.6 For simplicity, and in line with Franke et al. [2018], I assume that the tie-breaking

rule allocates the prize to Player 1 with probability 1.

Proposition 8. When Λ(e1, e2) = max{e1, e2} and the contest designer is able to use both

instruments simultaneously, it is optimal to set a = r1 and h = 0.

Proof. Given the tie-breaking rule and when a = r1 and h = 0, the Nash equilibrium is in

pure strategies: Player 1 chooses e∗1 = r1 and wins the prize with certainty while Player 2

chooses e∗2 = 0. According to the definition of reaches, in equilibrium players choose effort

strictly above reaches with probability zero. Therefore, inducing the expected maximum

individual effort r1 is the designer’s first best result.

In the optimum, the contest designer mimics a take-it-or-leave-it offer to the stronger player

and achieves her first best result. For other tie-breaking rules, the contest designer could

achieve a result arbitrarily close to the first best result. These results resonate with findings

about optimal revenue-maximizing all-pay auctions in Franke et al. [2018].

Next, I turn my focus to total effort and revisit Example 1. It turns out that a take-it-or-

leave-it offer is no longer optimal, but the simultaneous use of both instruments could still

benefit the contest designer.

Example 1 (revisit)Recall that Λ(e1, e2) = e1 + e2, c1(e) = 1
2
e2 and c2(e) = e2. Reaches

are r1 =
√

2 and r2 = 1. Notice that, in Proposition 8, the optimal combination of head

starts and handicaps results in the same modified reaches for both players, and thus levels

the playing field. In light of this, consider a combination (a, h) of instruments that levels

the playing field, namely r1 = a+ r2h. Furthermore, assume r1 − r2 ≥ a ≥ 0.

When the playing field is leveled, both players get the expected payoff of zero in equilibrium.

6I thank an anonymous reviewer for suggesting Proposition 8.
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Equilibrium strategies, denoted by GHSHC
i (e; a, h), are therefore:

GHSHC
1 (e; a, h) =


c2(

e−a
h

), if e ∈ [a, r1),

1, if e ∈ [r1,∞),

GHSHC
2 (e; a, h) =


c1(eh+ a), if e ∈ [0, r2),

1, if e ∈ [r2,∞).

A take-it-or-leave-it offer, the optimal head start (alone) and the optimal handicap (alone)

each induce the expected total effort 1.4145, 1.6213, and 1.6095, respectively.

Meanwhile, a combination (a, h) = (
√

2− h0, h0), where h0 = 1
9

(
3
√

2 + 2
)

+ 2
9

√
3
√

2 + 1 ≈

1.2024, induces the expected total effort approximately 1.6227.

Contrasted with Franke et al. [2018], a take-it-or-leave-it offer to the stronger player becomes

suboptimal in this case. That is because cost functions are convex in effort, and, as a result,

inducing the expected total effort equal to r1 is no longer first best. Also, we can see that

not every combination that levels the playing field is optimal. However, the contest designer

could still benefit from the simultaneous use of both instruments. �

5 Conclusion

In this paper, I have analyzed the optimal favoritism in a complete-information, all-pay

contest with two players, whose costs of effort are weakly convex. I find that any given

player’s effort distribution is ranked in the sense of first-order stochastic dominance according

to how (ex post) symmetric the two players are. Consequently, it is optimal for the contest

designer to “level the playing field” for any increasing objective functions, including total
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effort and maximum individual effort, as special cases. This result is a generalization of

the conventional wisdom that a contest designer would prefer an unbiased contest when

contestants are ex ante symmetric but a biased contest favoring the weaker player when

the players are ex ante asymmetric. I then provide sufficient conditions for head starts to

induce more effort than handicaps, which are consistent with findings in linear cost settings.

Lastly, I consider two special cases wherein the contest designer’s objective is either total

effort or maximum individual effort. I find that the contest designer could benefit from the

simultaneous use of both head starts and handicaps, and even achieve her first best result if

her objective is maximum individual effort.

Appendices

A Proof of Proposition 2

When a > r1 − r2, by definition T = r1, w1 = 0 and w2 = 1 − c2(T − a). Equilibrium

strategies are:

GHS
1 (e; a) =


w2, if e ∈ [0, a),

c2(e− a) + w2, if e ∈ [a, T ),

1, if e ∈ [T,∞),

GHS
2 (e; a) =


c1(e+ a), if e ∈ [0, T − a),

1, if e ∈ [T − a,∞).
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Hence,

∂GHS
1 (e; a)

∂a
=


c′2(T − a) > 0, if e ∈ [0, a),

c′2(T − a)− c′2(e− a) ≥ 0, if e ∈ [a, T ),

0, if e ∈ [T,∞),

∂GHS
2 (e; a)

∂a
=


c′1(e+ a) > 0, if e ∈ [0, T − a),

0, if e ∈ [T − a,∞).

Similarly, when 0 < a < r1 − r2, by definition T = a + r2, w1 = 1 − c1(T ) and w2 = 0.

Equilibrium strategies are:

GHS
1 (e; a) =


0, if e ∈ [0, a),

c2(e− a), if e ∈ [a, T ),

1, if e ∈ [T,∞),

GHS
2 (e; a) =


c1(e+ a) + w1, if e ∈ [0, r2),

1, if e ∈ [r2,∞).

Hence,

∂GHS
1 (e; a)

∂a
=


0, if e ∈ [0, a),

−c′2(e− a) < 0, if e ∈ [a, T ),

0, if e ∈ [T,∞),

∂GHS
2 (e; a)

∂a
=


c′1(e+ a)− c′1(r2 + a) ≤ 0, if e ∈ [0, r2),

0, if e ∈ [r2,∞).
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All boundary cases can be shown as in the proof of Proposition 1.

B Proof of Proposition 3

When 1 < h < r1
r2

, by definition T = r2, w1 = 1− c1(hT ) and w2 = 0. Equilibrium strategies

are:

GHC
1 (e;h) =


c2(

e
h
), if e ∈ [0, hT ),

1, if e ∈ [hT,∞),

GHC
2 (e;h) =


w1 + c1(he), if e ∈ [0, T ),

1, if e ∈ [T,∞).

Hence,

∂GHC
1 (e;h)

∂h
=


− e

h2 c
′
2(

e
h
) ≤ 0, if e ∈ [0, hT ),

0, if e ∈ [hT,∞),

∂GHC
2 (e;h)

∂h
=


−Tc′1(hT ) + ec′1(he) ≤ 0, if e ∈ [0, T ),

0, if e ∈ [T,∞).

Similarly, when r1
r2
< h, by definition T = r1

h
, w1 = 0 and w2 = 1 − c2(T ). Equilibrium

strategies are:
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GHC
1 (e;h) =


w2 + c2(

e
h
), if e ∈ [0, r1),

1, if e ∈ [r1,∞),

GHC
2 (e;h) =


c1(he), if e ∈ [0, T ),

1, if e ∈ [T,∞).

Hence,

∂GHC
1 (e;h)

∂h
=


r1
h2 c
′
2(

r1
h

)− e
h2 c
′
2(

e
h
) ≥ 0, if e ∈ [0, r1),

0, if e ∈ [r1,∞),

∂GHC
2 (e;h)

∂h
=


ec′1(he) ≥ 0, if e ∈ [0, T ),

0, if e ∈ [T,∞).

All boundary cases can be shown as in the proof of Proposition 1.
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C Proof of Proposition 4

When h < 1, by definition T = r̃2 = r2h, w1 = 1− c1(T ) and w2 = 0. Equilibrium strategies

are:

GHC
1 (e;h) =


c2(

e
h
), if e ∈ [0, T ),

1, if e ∈ [T,∞),

GHC
2 (e;h) =


w1 + c1(eh), if e ∈ [0, r2),

1, if e ∈ [r2,∞).

Hence,

∂GHC
1 (e;h)

∂h
=


− e

h2 c
′
2(

e
h
) ≤ 0, if e ∈ [0, T ),

0, if e ∈ [T,∞),

∂GHC
2 (e;h)

∂h
=


ec′1(eh)− r2c′1(T ) ≤ (e− r2)c′1(T ) ≤ 0, if e ∈ [0, r2),

0, if e ∈ [r2,∞).

All boundary cases can be shown as in the proof of Proposition 1.

D Proof of Proposition 5

Notice that:
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GHS
1 (e; a∗) =


0, if e ∈ [0, a∗],

c2(e− a∗), if e ∈ [a∗, r1],

1, if e > r1,

GHC
1 (e;h∗) =


c2(

e
h∗ ), if e ∈ [0, r1]

1, if e > r1.

GHS
2 (e; a∗) =


c1(e+ a∗), if e ∈ [0, r2],

1, if e > r2,

GHC
2 (e;h∗) =


c1(eh

∗), if e ∈ [0, r2],

1, if e > r2.

Because e − a∗ − e
h∗ = e(1 − 1

h∗ ) − r1(1 − 1
h∗ ) = (e − r1)(1 − 1

h∗ ) ≤ 0, monotonicity of c2

implies c2(e− a∗) ≤ c2(
e
h∗ ).

Similarly, e + a∗ − eh∗ = e(1 − h∗) − r1
h∗ (1 − h∗) = (1 − h∗)(e − r2) ≥ 0, which implies

c1(e+ a∗) ≥ c1(eh
∗).

Combining the two properties above, we can see that GHS
1 (·; a∗) FOSD GHC

1 (·;h∗) and that

GHC
2 (·;h∗) FOSD GHS

2 (·; a∗) in the interior of each segment. FOSD holds also on boundaries

because of the continuity of GHS
i (·; a) and GHC

i (·;h) in their first arguments.

E Proof of Proposition 6

Expected total effort induced by a∗ is:

TEa =

∫ r1

a∗
edc2(e− a∗) +

∫ r2

0

edc1(e+ a∗) = r1 + r2 −
∫ r2

0

c2(e)de−
∫ r1

a∗
c1(e)de.
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Expected total effort induced by h∗ is:

TEh =

∫ r1

0

edc2(
e

h∗
) +

∫ r2

0

edc1(eh
∗) = r1 + r2 − h∗

∫ r2

0

c2(e)de−
1

h∗

∫ r1

0

c1(e)de.

Therefore,

TEa − TEh = h∗
∫ r2

0

c2(e)de+
1

h∗

∫ r1

0

c1(e)de−
∫ r2

0

c2(e)de−
∫ r1

a∗2

c1(e)de

≥ (h∗ − 1)

∫ r2

0

c2(e)de−
h∗ − 1

h∗

∫ r1

0

c1(e)de

=
h∗ − 1

h∗

∫ r1

0

(c2(
e

h∗
)− c1(e))de

≥ 0

F Proof of Proposition 7

Let FHS(·; a) and FHC(·;h) denote distributions of maximum individual effort induced by

head starts and handicaps. We have

FHC(e;h∗) =


c2(

e
h∗ )c1(eh

∗), if e ∈ [0, r2),

c2(
e
h∗ ), if e ∈ [r2, r1],

1, if e > r1.

FHS(·; a∗) is more complicated and depends on the sizes of r1 and r2.
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Case 1: a∗ = r1 − r2 ≥ r2. In this case,

FHS(e; a∗) =


0, if e ∈ [0, a∗],

c2(e− a∗), if e ∈ (a∗, r1],

1, if e > r1.

To show FHS(·; a∗) FOSD FHC(·;h∗), it suffices to prove c2(e− a∗) ≤ c2(
e
h∗ ) for e ∈ [a∗, r1].

To see this, notice that e
h∗ − (e− a∗) = (e− r1)( 1

h∗ ) ≥ 0, monotonicity of c2 implies c2(
e
h∗ ) ≥

c2(e− a∗2).

Case 2: a∗ < r2. In this case,

FHS(e; a∗) =



0, if e ∈ [0, a∗],

c2(e− a∗)c1(e+ a∗), if e ∈ (a∗, r2),

c2(e− a∗), if e ∈ [r2, r1],

1, if e > r1.

To show FHS(·; a∗) FOSD FHC(·;h∗), in addition to the previous proof, we also need that

c2(
e
h∗ )c1(eh

∗) ≥ c2(e− a∗)c1(e+ a∗) for e ∈ [a∗, r2]. To see this, notice that

c2(
e
h∗ )c1(eh

∗)

c2(e− a∗)c1(e+ a∗)
=

φ(e2)

φ(e2 − a∗2)
·
( e

h∗

e− a∗

)m

On the right hand side, the first ratio is greater than one because c1(e1)c2(e2) = φ(e1e2)e
m
2

implies φ(·) is increasing; the second ratio is also greater than one because e
h∗ ≥ e− a∗ and

m > 0.

This completes the proof that FHS(·; a∗) FOSD FHC(·;h∗). As a property of FOSD, the
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expectation of the first distribution is larger.
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